Gnana P Krishnamoorthy, Anthony R Glover, Brian R Untch, Nickole Sigcha-Coello, Bin Xu, Dina Vukel, Yi Liu, Vera Tiedje, Jose Mario Bello Pineda, Katherine Berman, Prasanna P Tamarapu, Adrian Acuña-Ruiz, Mahesh Saqcena, Elisa de Stanchina, Laura Boucai, Ronald A Ghossein, Jeffrey A Knauf, Omar Abdel-Wahab, Robert K Bradley, James A Fagin
{"title":"RBM10缺失通过细胞骨架和细胞外基质mrna的异常剪接促进转移。","authors":"Gnana P Krishnamoorthy, Anthony R Glover, Brian R Untch, Nickole Sigcha-Coello, Bin Xu, Dina Vukel, Yi Liu, Vera Tiedje, Jose Mario Bello Pineda, Katherine Berman, Prasanna P Tamarapu, Adrian Acuña-Ruiz, Mahesh Saqcena, Elisa de Stanchina, Laura Boucai, Ronald A Ghossein, Jeffrey A Knauf, Omar Abdel-Wahab, Robert K Bradley, James A Fagin","doi":"10.1084/jem.20241029","DOIUrl":null,"url":null,"abstract":"<p><p>RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon inclusion events included vinculin (VCL), tenascin C (TNC), and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse HrasG12V/Rbm1OKO thyrocytes develop metastases that are reversed by RBM10 expression or by combined knockdown of VCL, CD44, and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusion in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFκB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 5","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849553/pdf/","citationCount":"0","resultStr":"{\"title\":\"RBM10 loss promotes metastases by aberrant splicing of cytoskeletal and extracellular matrix mRNAs.\",\"authors\":\"Gnana P Krishnamoorthy, Anthony R Glover, Brian R Untch, Nickole Sigcha-Coello, Bin Xu, Dina Vukel, Yi Liu, Vera Tiedje, Jose Mario Bello Pineda, Katherine Berman, Prasanna P Tamarapu, Adrian Acuña-Ruiz, Mahesh Saqcena, Elisa de Stanchina, Laura Boucai, Ronald A Ghossein, Jeffrey A Knauf, Omar Abdel-Wahab, Robert K Bradley, James A Fagin\",\"doi\":\"10.1084/jem.20241029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon inclusion events included vinculin (VCL), tenascin C (TNC), and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse HrasG12V/Rbm1OKO thyrocytes develop metastases that are reversed by RBM10 expression or by combined knockdown of VCL, CD44, and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusion in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFκB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"222 5\",\"pages\":\"\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849553/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20241029\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20241029","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
RBM10调节转录组范围内盒式外显子剪接。功能缺失的RBM10突变在远处转移的甲状腺癌中富集。RBM10缺失导致的转录组和错误剪接基因分析显示了亲迁移和RHO/RAC信号信号特征。RBM10的损失增加细胞速度。受外显子包含事件影响的细胞骨架和ECM转录本包括vinculin (VCL), tenascin C (TNC)和CD44。在rbm10缺失的细胞中,敲低VCL外显子包涵转录物可降低细胞速度,而敲低TNC和CD44外显子包涵异构体可降低侵袭性。rbm10缺失细胞中RAC1-GTP水平升高。小鼠HrasG12V/ rbm10ko甲状腺细胞发生转移,通过RBM10表达或联合敲低VCL、CD44和TNC包合异构体可逆转转移。因此,RBM10缺失在调节ecm -细胞骨架相互作用的转录本中产生外显子内含,导致RAC1激活和转移能力。此外,CRISPR-Cas9筛选RBM10缺失的合成致死率发现NFκB效应物是生存能力的核心,为这些致死性甲状腺癌提供了治疗靶点。
RBM10 loss promotes metastases by aberrant splicing of cytoskeletal and extracellular matrix mRNAs.
RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon inclusion events included vinculin (VCL), tenascin C (TNC), and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse HrasG12V/Rbm1OKO thyrocytes develop metastases that are reversed by RBM10 expression or by combined knockdown of VCL, CD44, and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusion in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFκB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.