细菌介导的橙皮苷转化、结构评价和针对幽门螺杆菌的计算药物靶向的阐明。

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Muhammad Naveed, Sara Khan, Tariq Aziz, Shafique Ur Rehman, Syeda Izma Makhdoom, Mitub Al-Harbi, Abdulrahman Alshammari
{"title":"细菌介导的橙皮苷转化、结构评价和针对幽门螺杆菌的计算药物靶向的阐明。","authors":"Muhammad Naveed, Sara Khan, Tariq Aziz, Shafique Ur Rehman, Syeda Izma Makhdoom, Mitub Al-Harbi, Abdulrahman Alshammari","doi":"10.1007/s12033-025-01406-8","DOIUrl":null,"url":null,"abstract":"<p><p>Biotransformation, a dynamic process conducted by microorganisms, holds promise in modifying natural compounds for enhanced therapeutic potential. In this study, we leverage bacterial systems to catalyze the transformation of hesperidin, obtained from Citrus sinensis, aiming for structural modifications that could optimize its bioactivity and computational targeting against Helicobacter pylori. Multiple bacterial species were employed to perform biotransformation reactions. HPLC and FTIR analyses were used to determine structural modifications and bio-transformed products. The reaction in which hesperidin metabolite was formed was catalyzed by Bacillus spp. The transformed products, along with the original compound, underwent rigorous bioactivity testing to evaluate their potential in combating oxidative stress, inflammation, and diabetes. Employing well-established in vitro methods, we assessed the bio-transformed derivatives for antioxidant efficacy, revealing an impressive 94% inhibition of free radicals compared to hesperidin. In terms of anti-inflammatory activity, the results showcased a substantial 92% inhibition, while the assessment of antidiabetic activity demonstrated a notable 85% inhibition. The hesperidin metabolites were more active than hesperidin in biological activity evaluations. So, the bio-transformed compound derived from hesperidin, along with pure compound, was used to design a computational drug targeting the bacterium H. pylori. Among these two compounds, the bio-transformed product of hesperidin with an alkyl amine exhibited the highest docking energy of - 180.26 kJ/mol, as compared to pure compound. SwissADME provided valuable insights into the compound's drug-likeness like 0.55 bioavailability and 8.41 synthetic accessibility. ProTox-II evaluated different toxicity endpoints with a 0.96 probability of being inactive in cytotoxicity. These findings support the potential of the bio-transformed compound as a promising candidate for further investigation and development as a drug against H. pylori.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidation of Bacterial-Mediated Hesperidin Transformation, Structural Evaluation, and Computational Drug Targeting against Helicobacter pylori.\",\"authors\":\"Muhammad Naveed, Sara Khan, Tariq Aziz, Shafique Ur Rehman, Syeda Izma Makhdoom, Mitub Al-Harbi, Abdulrahman Alshammari\",\"doi\":\"10.1007/s12033-025-01406-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biotransformation, a dynamic process conducted by microorganisms, holds promise in modifying natural compounds for enhanced therapeutic potential. In this study, we leverage bacterial systems to catalyze the transformation of hesperidin, obtained from Citrus sinensis, aiming for structural modifications that could optimize its bioactivity and computational targeting against Helicobacter pylori. Multiple bacterial species were employed to perform biotransformation reactions. HPLC and FTIR analyses were used to determine structural modifications and bio-transformed products. The reaction in which hesperidin metabolite was formed was catalyzed by Bacillus spp. The transformed products, along with the original compound, underwent rigorous bioactivity testing to evaluate their potential in combating oxidative stress, inflammation, and diabetes. Employing well-established in vitro methods, we assessed the bio-transformed derivatives for antioxidant efficacy, revealing an impressive 94% inhibition of free radicals compared to hesperidin. In terms of anti-inflammatory activity, the results showcased a substantial 92% inhibition, while the assessment of antidiabetic activity demonstrated a notable 85% inhibition. The hesperidin metabolites were more active than hesperidin in biological activity evaluations. So, the bio-transformed compound derived from hesperidin, along with pure compound, was used to design a computational drug targeting the bacterium H. pylori. Among these two compounds, the bio-transformed product of hesperidin with an alkyl amine exhibited the highest docking energy of - 180.26 kJ/mol, as compared to pure compound. SwissADME provided valuable insights into the compound's drug-likeness like 0.55 bioavailability and 8.41 synthetic accessibility. ProTox-II evaluated different toxicity endpoints with a 0.96 probability of being inactive in cytotoxicity. These findings support the potential of the bio-transformed compound as a promising candidate for further investigation and development as a drug against H. pylori.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-025-01406-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01406-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物转化是一种由微生物进行的动态过程,在修饰天然化合物以增强治疗潜力方面具有前景。在这项研究中,我们利用细菌系统催化从柑橘中提取的橙皮苷的转化,旨在进行结构修饰,以优化其生物活性和对幽门螺杆菌的计算靶向性。采用多种细菌进行生物转化反应。HPLC和FTIR分析确定了结构修饰和生物转化产物。在芽孢杆菌的催化下形成橙皮苷代谢物,转化产物与原始化合物一起进行了严格的生物活性测试,以评估其在抗氧化应激、炎症和糖尿病方面的潜力。采用成熟的体外方法,我们评估了生物转化衍生物的抗氧化功效,与橙皮苷相比,显示出令人印象深刻的94%的自由基抑制。在抗炎活性方面,结果显示出92%的抑制作用,而抗糖尿病活性的评估显示出85%的显著抑制作用。在生物活性评价中,橙皮苷代谢物比橙皮苷更有活性。因此,从橙皮苷中提取的生物转化化合物,与纯化合物一起,被用来设计一种针对幽门螺杆菌的计算药物。其中,橙皮苷与烷基胺生物转化产物的对接能最高,为- 180.26 kJ/mol。SwissADME为该化合物的药物相似性提供了有价值的见解,如0.55的生物利用度和8.41的合成可及性。ProTox-II评估了不同的毒性终点,其细胞毒性无活性的概率为0.96。这些发现支持了该生物转化化合物作为抗幽门螺杆菌药物的进一步研究和开发的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidation of Bacterial-Mediated Hesperidin Transformation, Structural Evaluation, and Computational Drug Targeting against Helicobacter pylori.

Biotransformation, a dynamic process conducted by microorganisms, holds promise in modifying natural compounds for enhanced therapeutic potential. In this study, we leverage bacterial systems to catalyze the transformation of hesperidin, obtained from Citrus sinensis, aiming for structural modifications that could optimize its bioactivity and computational targeting against Helicobacter pylori. Multiple bacterial species were employed to perform biotransformation reactions. HPLC and FTIR analyses were used to determine structural modifications and bio-transformed products. The reaction in which hesperidin metabolite was formed was catalyzed by Bacillus spp. The transformed products, along with the original compound, underwent rigorous bioactivity testing to evaluate their potential in combating oxidative stress, inflammation, and diabetes. Employing well-established in vitro methods, we assessed the bio-transformed derivatives for antioxidant efficacy, revealing an impressive 94% inhibition of free radicals compared to hesperidin. In terms of anti-inflammatory activity, the results showcased a substantial 92% inhibition, while the assessment of antidiabetic activity demonstrated a notable 85% inhibition. The hesperidin metabolites were more active than hesperidin in biological activity evaluations. So, the bio-transformed compound derived from hesperidin, along with pure compound, was used to design a computational drug targeting the bacterium H. pylori. Among these two compounds, the bio-transformed product of hesperidin with an alkyl amine exhibited the highest docking energy of - 180.26 kJ/mol, as compared to pure compound. SwissADME provided valuable insights into the compound's drug-likeness like 0.55 bioavailability and 8.41 synthetic accessibility. ProTox-II evaluated different toxicity endpoints with a 0.96 probability of being inactive in cytotoxicity. These findings support the potential of the bio-transformed compound as a promising candidate for further investigation and development as a drug against H. pylori.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信