Chenyu Fan, Hanfei Li, Ke Chen, Guohui Yang, Hongyu Xie, Haozheng Li, Yi Wu, Meng Li
{"title":"Brain compensatory activation during Stroop task in patients with mild cognitive impairment: a functional near-infrared spectroscopy study.","authors":"Chenyu Fan, Hanfei Li, Ke Chen, Guohui Yang, Hongyu Xie, Haozheng Li, Yi Wu, Meng Li","doi":"10.3389/fnagi.2025.1470747","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study investigated the disparities in brain activation patterns during the Stroop task among individuals with mild cognitive impairment (MCI) and those without any cognitive impairments (healthy controls, HCs) using functional near-infrared spectroscopy (fNIRS).</p><p><strong>Methods: </strong>We analyzed the cortical activation patterns of 73 patients with MCI and 63 HC individuals as they completed the Stroop task, employing fNIRS. The regions of interest (ROIs) included the dorsal prefrontal cortex (dPFC), ventrolateral prefrontal cortex (VLPFC), and parietal lobe (PL). The Stroop task is divided into early stage (0-15 s) and late stage (15-30 s). We also measured participants' behavior during the Stroop task, analyzed variations in cortical activation intensity at different experiment stages, and performed correlation analysis between Montreal Cognitive Assessment (MoCA) scores, Stroop performance, and oxygenation levels.</p><p><strong>Results: </strong>Our analysis revealed that individuals with MCI and HC demonstrated elevated cortical activation in the dPFC, VLPFC, and PL areas while performing the Stroop task (<i>q</i> < 0.05, FDR-corrected). The MCI group displayed longer response latencies compared to the HC group while demonstrating comparable accuracy performance across both congruent and incongruent Stroop trials. The MCI group showed compensatory activation in the VLPFC, and PL regions compared to the HC group during the late stage of the Stroop task (<i>q</i> < 0.05, FDR-corrected). Correlational analysis revealed a negative association between MoCA scores and oxygenation levels in the dPFC, VLPFC, and PL regions during the late stage of the Stroop task (<i>p</i> < 0.05). However, no correlation was found with behavioral performance.</p><p><strong>Conclusion: </strong>Mild cognitive impairment patients demonstrated effective compensation for their cognitive impairments at a partial behavioral level by engaging compensatory activation in the prefrontal, and parietal regions while performing the Stroop task.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"17 ","pages":"1470747"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11842388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2025.1470747","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Brain compensatory activation during Stroop task in patients with mild cognitive impairment: a functional near-infrared spectroscopy study.
Purpose: This study investigated the disparities in brain activation patterns during the Stroop task among individuals with mild cognitive impairment (MCI) and those without any cognitive impairments (healthy controls, HCs) using functional near-infrared spectroscopy (fNIRS).
Methods: We analyzed the cortical activation patterns of 73 patients with MCI and 63 HC individuals as they completed the Stroop task, employing fNIRS. The regions of interest (ROIs) included the dorsal prefrontal cortex (dPFC), ventrolateral prefrontal cortex (VLPFC), and parietal lobe (PL). The Stroop task is divided into early stage (0-15 s) and late stage (15-30 s). We also measured participants' behavior during the Stroop task, analyzed variations in cortical activation intensity at different experiment stages, and performed correlation analysis between Montreal Cognitive Assessment (MoCA) scores, Stroop performance, and oxygenation levels.
Results: Our analysis revealed that individuals with MCI and HC demonstrated elevated cortical activation in the dPFC, VLPFC, and PL areas while performing the Stroop task (q < 0.05, FDR-corrected). The MCI group displayed longer response latencies compared to the HC group while demonstrating comparable accuracy performance across both congruent and incongruent Stroop trials. The MCI group showed compensatory activation in the VLPFC, and PL regions compared to the HC group during the late stage of the Stroop task (q < 0.05, FDR-corrected). Correlational analysis revealed a negative association between MoCA scores and oxygenation levels in the dPFC, VLPFC, and PL regions during the late stage of the Stroop task (p < 0.05). However, no correlation was found with behavioral performance.
Conclusion: Mild cognitive impairment patients demonstrated effective compensation for their cognitive impairments at a partial behavioral level by engaging compensatory activation in the prefrontal, and parietal regions while performing the Stroop task.
期刊介绍:
Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.