KMT2复合蛋白ASH2L是减数分裂前期进展所必需的,但在分化的精原细胞中有丝分裂是必不可少的。

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2025-03-15 Epub Date: 2025-03-27 DOI:10.1242/dev.204630
Zhen Lin, Bowen Rong, Meixia Wu, Junyi Yan, Tong Hong, Linjun Hou, Xinzhe Tang, Qiang Liu, Xiaozhong Peng, Yao Chen, Fei Lan, Ming-Han Tong
{"title":"KMT2复合蛋白ASH2L是减数分裂前期进展所必需的,但在分化的精原细胞中有丝分裂是必不可少的。","authors":"Zhen Lin, Bowen Rong, Meixia Wu, Junyi Yan, Tong Hong, Linjun Hou, Xinzhe Tang, Qiang Liu, Xiaozhong Peng, Yao Chen, Fei Lan, Ming-Han Tong","doi":"10.1242/dev.204630","DOIUrl":null,"url":null,"abstract":"<p><p>ASH2L is a core component of KMT2 complexes, crucial for H3K4 trimethylation. However, its role in spermatogenesis remains elusive. Here, we demonstrate an essential role of Ash2l for meiotic prophase but dispensable for mitosis in differentiated spermatogonia. Using a germ cell-specific Ash2l knockout mouse model, we reveal that Ash2l deficiency leads to meiotic arrest and sterility in both sexes. Ash2l-deficient spermatocytes exhibit failures in chromosomal synapsis associated with persistent DMC1 foci and γH2AX, resulting in meiocyte loss due to apoptosis. Conversely, Ash2l-deficient differentiated spermatogonia show normal development. Mechanistically, Ash2l deficiency results in a global loss of H3K4me3 in promoter regions and significantly decreases expression of thousands of genes. Among these are genes involved in epigenetic silencing pathways, such as H3K9 di-methylation, DNA methylation and piRNA pathways, that are crucial for transposon repression during meiotic prophase I progression. Supporting this, we observe that Ash2l mutant spermatocytes display ectopic expression of LINE1-ORF1P. Our findings therefore reveal the previously unappreciated role of ASH2L-dependent H3K4me3 modification in spermatogenesis and provide clues to the molecular mechanisms in epigenetic disorders underlying male infertility.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The KMT2 complex protein ASH2L is required for meiotic prophase progression but dispensable for mitosis in differentiated spermatogonia.\",\"authors\":\"Zhen Lin, Bowen Rong, Meixia Wu, Junyi Yan, Tong Hong, Linjun Hou, Xinzhe Tang, Qiang Liu, Xiaozhong Peng, Yao Chen, Fei Lan, Ming-Han Tong\",\"doi\":\"10.1242/dev.204630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ASH2L is a core component of KMT2 complexes, crucial for H3K4 trimethylation. However, its role in spermatogenesis remains elusive. Here, we demonstrate an essential role of Ash2l for meiotic prophase but dispensable for mitosis in differentiated spermatogonia. Using a germ cell-specific Ash2l knockout mouse model, we reveal that Ash2l deficiency leads to meiotic arrest and sterility in both sexes. Ash2l-deficient spermatocytes exhibit failures in chromosomal synapsis associated with persistent DMC1 foci and γH2AX, resulting in meiocyte loss due to apoptosis. Conversely, Ash2l-deficient differentiated spermatogonia show normal development. Mechanistically, Ash2l deficiency results in a global loss of H3K4me3 in promoter regions and significantly decreases expression of thousands of genes. Among these are genes involved in epigenetic silencing pathways, such as H3K9 di-methylation, DNA methylation and piRNA pathways, that are crucial for transposon repression during meiotic prophase I progression. Supporting this, we observe that Ash2l mutant spermatocytes display ectopic expression of LINE1-ORF1P. Our findings therefore reveal the previously unappreciated role of ASH2L-dependent H3K4me3 modification in spermatogenesis and provide clues to the molecular mechanisms in epigenetic disorders underlying male infertility.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204630\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204630","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

ASH2L 是 KMT2 复合物的核心成分,对 H3K4 三甲基化至关重要。然而,它在精子发生过程中的作用仍然难以捉摸。在这里,我们证明了Ash2l在减数分裂前期的重要作用,但在分化精原细胞的有丝分裂过程中则是不可或缺的。我们利用一种生殖细胞特异性Ash2l基因敲除小鼠模型,发现Ash2l缺乏会导致雌雄精子减数分裂停滞和不育。缺乏Ash2l的精母细胞表现出染色体突触失败,并伴有持续的DMC1病灶和γH2AX,导致减数分裂细胞凋亡。相反,缺乏Ash2l的分化精原细胞则发育正常。从机理上讲,Ash2l 缺乏会导致启动子区域 H3K4me3 的全面缺失,并显著降低数千个基因的表达。其中包括参与表观遗传沉默途径(如 H3K9 二甲基化、DNA 甲基化和 piRNA 途径)的基因,这些基因对减数分裂第一阶段进展过程中的转座子抑制至关重要。我们观察到,Ash2l突变体精母细胞显示出LINE1-ORF1P的异位表达,证明了这一点。因此,我们的研究结果揭示了在精子发生过程中依赖于ASH2L的H3K4me3修饰以前未被重视的作用,并为男性不育的表观遗传疾病的分子机制提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The KMT2 complex protein ASH2L is required for meiotic prophase progression but dispensable for mitosis in differentiated spermatogonia.

ASH2L is a core component of KMT2 complexes, crucial for H3K4 trimethylation. However, its role in spermatogenesis remains elusive. Here, we demonstrate an essential role of Ash2l for meiotic prophase but dispensable for mitosis in differentiated spermatogonia. Using a germ cell-specific Ash2l knockout mouse model, we reveal that Ash2l deficiency leads to meiotic arrest and sterility in both sexes. Ash2l-deficient spermatocytes exhibit failures in chromosomal synapsis associated with persistent DMC1 foci and γH2AX, resulting in meiocyte loss due to apoptosis. Conversely, Ash2l-deficient differentiated spermatogonia show normal development. Mechanistically, Ash2l deficiency results in a global loss of H3K4me3 in promoter regions and significantly decreases expression of thousands of genes. Among these are genes involved in epigenetic silencing pathways, such as H3K9 di-methylation, DNA methylation and piRNA pathways, that are crucial for transposon repression during meiotic prophase I progression. Supporting this, we observe that Ash2l mutant spermatocytes display ectopic expression of LINE1-ORF1P. Our findings therefore reveal the previously unappreciated role of ASH2L-dependent H3K4me3 modification in spermatogenesis and provide clues to the molecular mechanisms in epigenetic disorders underlying male infertility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信