对连续暴露的因果效应曲线乘上稳健的差中差估计。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-01-07 DOI:10.1093/biomtc/ujaf015
Gary Hettinger, Youjin Lee, Nandita Mitra
{"title":"对连续暴露的因果效应曲线乘上稳健的差中差估计。","authors":"Gary Hettinger, Youjin Lee, Nandita Mitra","doi":"10.1093/biomtc/ujaf015","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers commonly use difference-in-differences (DiD) designs to evaluate public policy interventions. While methods exist for estimating effects in the context of binary interventions, policies often result in varied exposures across regions implementing the policy. Yet, existing approaches for incorporating continuous exposures face substantial limitations in addressing confounding variables associated with intervention status, exposure levels, and outcome trends. These limitations significantly constrain policymakers' ability to fully comprehend policy impacts and design future interventions. In this work, we propose new estimators for causal effect curves within the DiD framework, accounting for multiple sources of confounding. Our approach accommodates misspecification of a subset of intervention, exposure, and outcome models while avoiding any parametric assumptions on the effect curve. We present the statistical properties of the proposed methods and illustrate their application through simulations and a study investigating the heterogeneous effects of a nutritional excise tax under different levels of accessibility to cross-border shopping.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiply robust difference-in-differences estimation of causal effect curves for continuous exposures.\",\"authors\":\"Gary Hettinger, Youjin Lee, Nandita Mitra\",\"doi\":\"10.1093/biomtc/ujaf015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Researchers commonly use difference-in-differences (DiD) designs to evaluate public policy interventions. While methods exist for estimating effects in the context of binary interventions, policies often result in varied exposures across regions implementing the policy. Yet, existing approaches for incorporating continuous exposures face substantial limitations in addressing confounding variables associated with intervention status, exposure levels, and outcome trends. These limitations significantly constrain policymakers' ability to fully comprehend policy impacts and design future interventions. In this work, we propose new estimators for causal effect curves within the DiD framework, accounting for multiple sources of confounding. Our approach accommodates misspecification of a subset of intervention, exposure, and outcome models while avoiding any parametric assumptions on the effect curve. We present the statistical properties of the proposed methods and illustrate their application through simulations and a study investigating the heterogeneous effects of a nutritional excise tax under different levels of accessibility to cross-border shopping.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究人员通常使用差异中的差异(DiD)设计来评估公共政策干预。虽然存在评估二元干预措施影响的方法,但政策往往导致不同地区实施政策的风险敞口不同。然而,现有的纳入持续暴露的方法在处理与干预状态、暴露水平和结果趋势相关的混杂变量方面存在很大的局限性。这些限制极大地限制了决策者充分理解政策影响和设计未来干预措施的能力。在这项工作中,我们提出了DiD框架内因果效应曲线的新估计量,考虑了多种混杂源。我们的方法可以适应干预、暴露和结果模型子集的错误说明,同时避免对效果曲线进行任何参数假设。我们提出了所提出的方法的统计特性,并通过模拟和一项研究来说明它们的应用,该研究调查了营养消费税在不同水平的跨境购物可及性下的异质效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiply robust difference-in-differences estimation of causal effect curves for continuous exposures.

Researchers commonly use difference-in-differences (DiD) designs to evaluate public policy interventions. While methods exist for estimating effects in the context of binary interventions, policies often result in varied exposures across regions implementing the policy. Yet, existing approaches for incorporating continuous exposures face substantial limitations in addressing confounding variables associated with intervention status, exposure levels, and outcome trends. These limitations significantly constrain policymakers' ability to fully comprehend policy impacts and design future interventions. In this work, we propose new estimators for causal effect curves within the DiD framework, accounting for multiple sources of confounding. Our approach accommodates misspecification of a subset of intervention, exposure, and outcome models while avoiding any parametric assumptions on the effect curve. We present the statistical properties of the proposed methods and illustrate their application through simulations and a study investigating the heterogeneous effects of a nutritional excise tax under different levels of accessibility to cross-border shopping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信