通过协同设计策略显著提高了无铅压电陶瓷的能量收集性能。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianxun Zhang, Qianqian Xu, Yan Zhang, Wei Guo, Hanmin Zeng, Yimeng He, Jiatao Wu, Longlong Guo, Kechao Zhou, Dou Zhang
{"title":"通过协同设计策略显著提高了无铅压电陶瓷的能量收集性能。","authors":"Jianxun Zhang, Qianqian Xu, Yan Zhang, Wei Guo, Hanmin Zeng, Yimeng He, Jiatao Wu, Longlong Guo, Kechao Zhou, Dou Zhang","doi":"10.1039/d4mh01902d","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of the Internet of Things, there exists an urgent necessity for high performance piezoelectric energy harvesters to facilitate the construction of more efficient wireless sensor systems. However, the development of piezoelectric energy harvesters with high power density remains a major challenge. In this study, we present a synergistic design strategy aimed at improving the output performance of piezoelectric energy harvesters. Micro-pores with low permittivity were introduced into the ceramics to improve the piezoelectric key parameters, including the piezoelectric voltage coefficient (<i>g</i><sub>33</sub>) and the piezoelectric energy harvesting figure of merit (FoM<sub>33</sub>). The barium titanate (BTO) ceramics with 60% aligned pores obtained high <i>g</i><sub>33</sub> and FoM<sub>33</sub>, which were up to 24.8 × 10<sup>-3</sup> V m N<sup>-1</sup> and 3.3 × 10<sup>-12</sup> m<sup>2</sup> N<sup>-1</sup>. By optimizing the aspect ratio of each ceramic unit, a higher effective stress level dispersed in the ceramic phase was achieved, and the open circuit voltage of the sensor was significantly improved (41.3%). The construction of high-output performance piezoelectric energy harvesters based on BTO ceramics with relatively low piezoelectric coefficients was successfully achieved <i>via</i> this synergistic design strategy. This high-performance energy harvester exhibits excellent open-circuit voltage (354.8 V), short-circuit current (710.1 μA) and power density (16.7 mW cm<sup>-2</sup>), demonstrating the feasibility of this synergistic design strategy in developing high-output energy supply systems. The application of piezoelectric energy harvesters in powering micro-devices and monitoring train stability was demonstrated. This work is expected to provide new opportunities for the fabrication of future self-powered electronic devices.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significantly enhanced energy harvesting performance in lead-free piezoceramics <i>via</i> a synergistic design strategy.\",\"authors\":\"Jianxun Zhang, Qianqian Xu, Yan Zhang, Wei Guo, Hanmin Zeng, Yimeng He, Jiatao Wu, Longlong Guo, Kechao Zhou, Dou Zhang\",\"doi\":\"10.1039/d4mh01902d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of the Internet of Things, there exists an urgent necessity for high performance piezoelectric energy harvesters to facilitate the construction of more efficient wireless sensor systems. However, the development of piezoelectric energy harvesters with high power density remains a major challenge. In this study, we present a synergistic design strategy aimed at improving the output performance of piezoelectric energy harvesters. Micro-pores with low permittivity were introduced into the ceramics to improve the piezoelectric key parameters, including the piezoelectric voltage coefficient (<i>g</i><sub>33</sub>) and the piezoelectric energy harvesting figure of merit (FoM<sub>33</sub>). The barium titanate (BTO) ceramics with 60% aligned pores obtained high <i>g</i><sub>33</sub> and FoM<sub>33</sub>, which were up to 24.8 × 10<sup>-3</sup> V m N<sup>-1</sup> and 3.3 × 10<sup>-12</sup> m<sup>2</sup> N<sup>-1</sup>. By optimizing the aspect ratio of each ceramic unit, a higher effective stress level dispersed in the ceramic phase was achieved, and the open circuit voltage of the sensor was significantly improved (41.3%). The construction of high-output performance piezoelectric energy harvesters based on BTO ceramics with relatively low piezoelectric coefficients was successfully achieved <i>via</i> this synergistic design strategy. This high-performance energy harvester exhibits excellent open-circuit voltage (354.8 V), short-circuit current (710.1 μA) and power density (16.7 mW cm<sup>-2</sup>), demonstrating the feasibility of this synergistic design strategy in developing high-output energy supply systems. The application of piezoelectric energy harvesters in powering micro-devices and monitoring train stability was demonstrated. This work is expected to provide new opportunities for the fabrication of future self-powered electronic devices.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01902d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01902d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着物联网的快速发展,为了构建更高效的无线传感器系统,迫切需要高性能的压电能量采集器。然而,开发高功率密度的压电能量采集器仍然是一个重大挑战。在这项研究中,我们提出了一种协同设计策略,旨在提高压电能量采集器的输出性能。通过在陶瓷中引入低介电常数微孔,提高了压电电压系数(g33)和压电能量收集优值(FoM33)等关键参数。具有60%排列孔的钛酸钡(BTO)陶瓷获得了较高的g33和FoM33,分别高达24.8 × 10-3 V m N-1和3.3 × 10-12 m2 N-1。通过优化各陶瓷单元的宽高比,实现了更高的分散在陶瓷相中的有效应力水平,传感器的开路电压显著提高(41.3%)。通过这种协同设计策略,成功地构建了基于BTO陶瓷的低压电系数高输出性能的压电能量采集器。该高性能能量采集器具有良好的开路电压(354.8 V)、短路电流(710.1 μA)和功率密度(16.7 mW cm-2),证明了该协同设计策略在开发高输出能量供应系统中的可行性。演示了压电能量采集器在微器件供电和列车稳定性监测中的应用。这项工作有望为未来自供电电子器件的制造提供新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significantly enhanced energy harvesting performance in lead-free piezoceramics via a synergistic design strategy.

With the rapid development of the Internet of Things, there exists an urgent necessity for high performance piezoelectric energy harvesters to facilitate the construction of more efficient wireless sensor systems. However, the development of piezoelectric energy harvesters with high power density remains a major challenge. In this study, we present a synergistic design strategy aimed at improving the output performance of piezoelectric energy harvesters. Micro-pores with low permittivity were introduced into the ceramics to improve the piezoelectric key parameters, including the piezoelectric voltage coefficient (g33) and the piezoelectric energy harvesting figure of merit (FoM33). The barium titanate (BTO) ceramics with 60% aligned pores obtained high g33 and FoM33, which were up to 24.8 × 10-3 V m N-1 and 3.3 × 10-12 m2 N-1. By optimizing the aspect ratio of each ceramic unit, a higher effective stress level dispersed in the ceramic phase was achieved, and the open circuit voltage of the sensor was significantly improved (41.3%). The construction of high-output performance piezoelectric energy harvesters based on BTO ceramics with relatively low piezoelectric coefficients was successfully achieved via this synergistic design strategy. This high-performance energy harvester exhibits excellent open-circuit voltage (354.8 V), short-circuit current (710.1 μA) and power density (16.7 mW cm-2), demonstrating the feasibility of this synergistic design strategy in developing high-output energy supply systems. The application of piezoelectric energy harvesters in powering micro-devices and monitoring train stability was demonstrated. This work is expected to provide new opportunities for the fabrication of future self-powered electronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信