在地球系统模型中改进海洋生物地球化学的一种新的基于集合的参数估计方法

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Tarkeshwar Singh, François Counillon, Jerry Tjiputra, Yiguo Wang
{"title":"在地球系统模型中改进海洋生物地球化学的一种新的基于集合的参数估计方法","authors":"Tarkeshwar Singh,&nbsp;François Counillon,&nbsp;Jerry Tjiputra,&nbsp;Yiguo Wang","doi":"10.1029/2024MS004237","DOIUrl":null,"url":null,"abstract":"<p>Estimating ocean biogeochemistry (BGC) parameters in Earth System Models is challenging due to multiple error sources and interlinked parameter sensitivities. Reducing the temperature and salinity bias in the ocean physical component of the Norwegian Earth System Model (NorESM) diminishes the BGC state bias at intermediate depth but leads to a greater bias increase near the surface. This suggests that BGC parameters are tuned to compensate for the physical ocean model biases. We successfully apply the iterative ensemble smoother data assimilation technique to estimate BGC parameters in NorESM with reduced bias in its physical ocean component. We estimate BGC parameters based on the monthly climatological error of nitrate, phosphate, and oxygen in a coupled reanalysis of NorESM that assimilates observed monthly climatology of temperature and salinity. First, we compare the performance of globally uniform and spatially varying parameter estimations. Both approaches reduce BGC bias obtained with default parameters, even for variables not assimilated in the parameter estimation (e.g., <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> fluxes and primary production). While spatial parameter estimation performs locally best, it also increases biases in areas with few observations, and overall performs poorer than global parameter estimation. A second iteration further reduces the bias in the near-surface BGC with global parameter estimation. Finally, we assess the performance of global estimated parameters in a 30-year coupled reanalysis produced by assimilating time-varying temperature and salinity observations. This reanalysis reduces error by 10%–20% for phosphate, nitrate, oxygen, and dissolved inorganic carbon compared to a reanalysis done with default parameters.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004237","citationCount":"0","resultStr":"{\"title\":\"A Novel Ensemble-Based Parameter Estimation for Improving Ocean Biogeochemistry in an Earth System Model\",\"authors\":\"Tarkeshwar Singh,&nbsp;François Counillon,&nbsp;Jerry Tjiputra,&nbsp;Yiguo Wang\",\"doi\":\"10.1029/2024MS004237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Estimating ocean biogeochemistry (BGC) parameters in Earth System Models is challenging due to multiple error sources and interlinked parameter sensitivities. Reducing the temperature and salinity bias in the ocean physical component of the Norwegian Earth System Model (NorESM) diminishes the BGC state bias at intermediate depth but leads to a greater bias increase near the surface. This suggests that BGC parameters are tuned to compensate for the physical ocean model biases. We successfully apply the iterative ensemble smoother data assimilation technique to estimate BGC parameters in NorESM with reduced bias in its physical ocean component. We estimate BGC parameters based on the monthly climatological error of nitrate, phosphate, and oxygen in a coupled reanalysis of NorESM that assimilates observed monthly climatology of temperature and salinity. First, we compare the performance of globally uniform and spatially varying parameter estimations. Both approaches reduce BGC bias obtained with default parameters, even for variables not assimilated in the parameter estimation (e.g., <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math> fluxes and primary production). While spatial parameter estimation performs locally best, it also increases biases in areas with few observations, and overall performs poorer than global parameter estimation. A second iteration further reduces the bias in the near-surface BGC with global parameter estimation. Finally, we assess the performance of global estimated parameters in a 30-year coupled reanalysis produced by assimilating time-varying temperature and salinity observations. This reanalysis reduces error by 10%–20% for phosphate, nitrate, oxygen, and dissolved inorganic carbon compared to a reanalysis done with default parameters.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004237\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004237\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004237","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

地球系统模型中海洋生物地球化学(BGC)参数的估计由于误差源多且参数敏感性相互关联而具有挑战性。挪威地球系统模式(NorESM)海洋物理分量的温度和盐度偏差降低了中深度的BGC状态偏差,但导致近地表的偏差增加更大。这表明BGC参数被调整以补偿物理海洋模式偏差。我们成功地将迭代集合平滑数据同化技术应用于NorESM中BGC参数的估计,减少了其物理海洋分量的偏差。我们根据NorESM的月气候误差估算了BGC参数,NorESM同化了观测到的月温度和盐度气候。首先,我们比较了全局一致和空间变化参数估计的性能。这两种方法都减少了使用默认参数获得的BGC偏差,即使对于参数估计中未吸收的变量(例如,CO 2 ${\text{CO}}_{2}$通量和初级产量)也是如此。虽然空间参数估计在局部表现最好,但在观测值较少的区域也会增加偏差,总体上表现不如全局参数估计。第二次迭代利用全局参数估计进一步减小了近地表BGC中的偏差。最后,我们通过同化时变温度和盐度观测数据,评估了30年耦合再分析中全球估计参数的性能。与使用默认参数进行的再分析相比,该再分析将磷酸盐、硝酸盐、氧气和溶解无机碳的误差降低了10%-20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Novel Ensemble-Based Parameter Estimation for Improving Ocean Biogeochemistry in an Earth System Model

A Novel Ensemble-Based Parameter Estimation for Improving Ocean Biogeochemistry in an Earth System Model

Estimating ocean biogeochemistry (BGC) parameters in Earth System Models is challenging due to multiple error sources and interlinked parameter sensitivities. Reducing the temperature and salinity bias in the ocean physical component of the Norwegian Earth System Model (NorESM) diminishes the BGC state bias at intermediate depth but leads to a greater bias increase near the surface. This suggests that BGC parameters are tuned to compensate for the physical ocean model biases. We successfully apply the iterative ensemble smoother data assimilation technique to estimate BGC parameters in NorESM with reduced bias in its physical ocean component. We estimate BGC parameters based on the monthly climatological error of nitrate, phosphate, and oxygen in a coupled reanalysis of NorESM that assimilates observed monthly climatology of temperature and salinity. First, we compare the performance of globally uniform and spatially varying parameter estimations. Both approaches reduce BGC bias obtained with default parameters, even for variables not assimilated in the parameter estimation (e.g., CO 2 ${\text{CO}}_{2}$ fluxes and primary production). While spatial parameter estimation performs locally best, it also increases biases in areas with few observations, and overall performs poorer than global parameter estimation. A second iteration further reduces the bias in the near-surface BGC with global parameter estimation. Finally, we assess the performance of global estimated parameters in a 30-year coupled reanalysis produced by assimilating time-varying temperature and salinity observations. This reanalysis reduces error by 10%–20% for phosphate, nitrate, oxygen, and dissolved inorganic carbon compared to a reanalysis done with default parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信