黄二铁蛋白在造浆菌中的应用:在光保护和效率之间导航

IF 5.7 1区 生物学 Q1 PLANT SCIENCES
Eleonora Traverso, Claudia Beraldo, Marco Armellin, Alessandro Alboresi, Tomas Morosinotto
{"title":"黄二铁蛋白在造浆菌中的应用:在光保护和效率之间导航","authors":"Eleonora Traverso,&nbsp;Claudia Beraldo,&nbsp;Marco Armellin,&nbsp;Alessandro Alboresi,&nbsp;Tomas Morosinotto","doi":"10.1111/tpj.70052","DOIUrl":null,"url":null,"abstract":"<p>Sunlight is the primary energy source for photosynthetic organisms, driving electron transport that supports the synthesis of ATP and NADPH. In dynamic environmental conditions, photosynthetic electron transport requires continuous modulation to prevent over-reduction and safeguard against potential damage. Flavodiiron proteins (FLV) contribute to photoprotection by accepting electrons downstream of Photosystem I, reducing oxygen to water. FLV were shown to have a seminal role in response to abrupt changes in illumination intensity in various photosynthetic organisms, such as cyanobacteria, green algae, mosses, and gymnosperms but were lost during evolution of angiosperms. In this work, <i>Physcomitrium patens</i> plants with strong FLV accumulation, up to 20 times higher than WT, were isolated. Overexpressor plants exhibited faster activation of electron transport but did not gain additional tolerance to light fluctuations, suggesting that the contribution to photoprotection from the FLV was already saturated in WT plants. On the contrary, strong protein overexpression caused a growth penalty under steady low or high light intensity suggesting that FLV overaccumulation can be detrimental, at least in some conditions, opening hypotheses to explain why these proteins were lost during the evolution of angiosperms.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 4","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70052","citationCount":"0","resultStr":"{\"title\":\"Flavodiiron proteins in Physcomitrium patens: navigating the edge between photoprotection and efficiency\",\"authors\":\"Eleonora Traverso,&nbsp;Claudia Beraldo,&nbsp;Marco Armellin,&nbsp;Alessandro Alboresi,&nbsp;Tomas Morosinotto\",\"doi\":\"10.1111/tpj.70052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sunlight is the primary energy source for photosynthetic organisms, driving electron transport that supports the synthesis of ATP and NADPH. In dynamic environmental conditions, photosynthetic electron transport requires continuous modulation to prevent over-reduction and safeguard against potential damage. Flavodiiron proteins (FLV) contribute to photoprotection by accepting electrons downstream of Photosystem I, reducing oxygen to water. FLV were shown to have a seminal role in response to abrupt changes in illumination intensity in various photosynthetic organisms, such as cyanobacteria, green algae, mosses, and gymnosperms but were lost during evolution of angiosperms. In this work, <i>Physcomitrium patens</i> plants with strong FLV accumulation, up to 20 times higher than WT, were isolated. Overexpressor plants exhibited faster activation of electron transport but did not gain additional tolerance to light fluctuations, suggesting that the contribution to photoprotection from the FLV was already saturated in WT plants. On the contrary, strong protein overexpression caused a growth penalty under steady low or high light intensity suggesting that FLV overaccumulation can be detrimental, at least in some conditions, opening hypotheses to explain why these proteins were lost during the evolution of angiosperms.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\"121 4\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.70052\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70052\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.70052","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阳光是光合生物的主要能量来源,驱动电子传递,支持ATP和NADPH的合成。在动态环境条件下,光合作用的电子传递需要持续调节,以防止过度还原和防止潜在的损害。黄二铁蛋白(FLV)通过接受光系统I下游的电子,将氧还原为水,从而有助于光保护。FLV在各种光合生物(如蓝藻、绿藻、苔藓和裸子植物)对光照强度突变的响应中具有重要作用,但在被子植物的进化过程中丢失了。本研究分离到了FLV积累较强的植物,FLV积累量是WT的20倍。过表达植物表现出更快的电子传递激活,但没有获得额外的对光波动的耐受性,这表明FLV对光保护的贡献在WT植物中已经饱和。相反,在稳定的低或高光强下,强蛋白过表达会导致生长惩罚,这表明FLV的过度积累可能是有害的,至少在某些条件下,这为解释为什么这些蛋白在被子植物的进化过程中丢失提供了假说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flavodiiron proteins in Physcomitrium patens: navigating the edge between photoprotection and efficiency

Flavodiiron proteins in Physcomitrium patens: navigating the edge between photoprotection and efficiency

Sunlight is the primary energy source for photosynthetic organisms, driving electron transport that supports the synthesis of ATP and NADPH. In dynamic environmental conditions, photosynthetic electron transport requires continuous modulation to prevent over-reduction and safeguard against potential damage. Flavodiiron proteins (FLV) contribute to photoprotection by accepting electrons downstream of Photosystem I, reducing oxygen to water. FLV were shown to have a seminal role in response to abrupt changes in illumination intensity in various photosynthetic organisms, such as cyanobacteria, green algae, mosses, and gymnosperms but were lost during evolution of angiosperms. In this work, Physcomitrium patens plants with strong FLV accumulation, up to 20 times higher than WT, were isolated. Overexpressor plants exhibited faster activation of electron transport but did not gain additional tolerance to light fluctuations, suggesting that the contribution to photoprotection from the FLV was already saturated in WT plants. On the contrary, strong protein overexpression caused a growth penalty under steady low or high light intensity suggesting that FLV overaccumulation can be detrimental, at least in some conditions, opening hypotheses to explain why these proteins were lost during the evolution of angiosperms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信