IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Nianqi Liu, Zifeng Yuan
{"title":"Multi-Phase-Field Method for Dynamic Fracture in Composite Materials Based on Reduced-Order-Homogenization","authors":"Nianqi Liu,&nbsp;Zifeng Yuan","doi":"10.1002/nme.70012","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this manuscript, we extend the quasi-static multi-phase-field method for composite materials to the dynamic case. In the dynamic multi-phase-field method, each phase of the composites has its individual phase field, and the degradation of each phase is governed by its respective phase field. The macroscopic response is then obtained by averaging and homogenization approaches through the reduced-order-homogenization (ROH) framework. Through the ROH and the <span>Francfort-Marigo</span> variational principle, we can obtain the equations that govern the motion of the composites and the evolution of each phase field. This method is capable of capturing the characteristics of dynamic fracture, such as crack branching, without the need for any additional bifurcation criterion. Moreover, it can capture dynamic fracture patterns in composite materials, including matrix cracking, fiber breakage, and delamination. The corresponding numerical algorithm that includes spatial and temporal discretization is developed. An implicit, staggered <span>Newton-Raphson</span> iterative scheme is implemented to solve the nonlinear coupled equations. Finally, this method is tested with several sets of dynamic fracture benchmarks, which demonstrates good agreement with the experiments and other numerical methods.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.70012","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文将复合材料的准静态多相场方法推广到动态情况。在动态多相场法中,复合材料的每一相都有其单独的相场,每一相的降解都受其相场的控制。然后通过降阶均匀化(ROH)框架,通过平均和均匀化方法获得宏观响应。通过ROH和Francfort-Marigo变分原理,可以得到控制复合材料运动和各相场演化的方程。该方法能够捕捉动态断裂的特征,如裂纹分支,而不需要任何额外的分岔准则。此外,它还可以捕捉复合材料的动态断裂模式,包括基体开裂、纤维断裂和分层。提出了相应的数值算法,包括空间离散和时间离散。采用隐式交错Newton-Raphson迭代格式求解非线性耦合方程。最后,利用多组动态裂缝基准对该方法进行了验证,结果与实验及其他数值方法吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Phase-Field Method for Dynamic Fracture in Composite Materials Based on Reduced-Order-Homogenization

In this manuscript, we extend the quasi-static multi-phase-field method for composite materials to the dynamic case. In the dynamic multi-phase-field method, each phase of the composites has its individual phase field, and the degradation of each phase is governed by its respective phase field. The macroscopic response is then obtained by averaging and homogenization approaches through the reduced-order-homogenization (ROH) framework. Through the ROH and the Francfort-Marigo variational principle, we can obtain the equations that govern the motion of the composites and the evolution of each phase field. This method is capable of capturing the characteristics of dynamic fracture, such as crack branching, without the need for any additional bifurcation criterion. Moreover, it can capture dynamic fracture patterns in composite materials, including matrix cracking, fiber breakage, and delamination. The corresponding numerical algorithm that includes spatial and temporal discretization is developed. An implicit, staggered Newton-Raphson iterative scheme is implemented to solve the nonlinear coupled equations. Finally, this method is tested with several sets of dynamic fracture benchmarks, which demonstrates good agreement with the experiments and other numerical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信