分形自相似数据的稀疏恢复及其在铀分布中的应用

IF 1.5 3区 化学 Q3 CHEMISTRY, ANALYTICAL
Jianyun Wang, Chenkai He, Zhenghua Xu, Yifan Chen, Yong Liu
{"title":"分形自相似数据的稀疏恢复及其在铀分布中的应用","authors":"Jianyun Wang,&nbsp;Chenkai He,&nbsp;Zhenghua Xu,&nbsp;Yifan Chen,&nbsp;Yong Liu","doi":"10.1007/s10967-024-09950-4","DOIUrl":null,"url":null,"abstract":"<div><p>Uranium is a rare and important energy mineral. In order to study the distribution characteristics of uranium deposits, we establish a data restoration algorithm with fractal features and sparse known point data. The algorithm ensures the accuracy of the restoration and the retention of fractal features through the steps of determining the basis function, preserving the dimension invariant restoration, and dimension greedy optimization. By comparing the numerical test with the Kriging interpolation method, it is proved that the algorithm is better in accuracy error and dimension error when restoring the fractal feature data.</p></div>","PeriodicalId":661,"journal":{"name":"Journal of Radioanalytical and Nuclear Chemistry","volume":"334 2","pages":"1205 - 1215"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse restoration of fractal self-similar data and its application in uranium distribution\",\"authors\":\"Jianyun Wang,&nbsp;Chenkai He,&nbsp;Zhenghua Xu,&nbsp;Yifan Chen,&nbsp;Yong Liu\",\"doi\":\"10.1007/s10967-024-09950-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Uranium is a rare and important energy mineral. In order to study the distribution characteristics of uranium deposits, we establish a data restoration algorithm with fractal features and sparse known point data. The algorithm ensures the accuracy of the restoration and the retention of fractal features through the steps of determining the basis function, preserving the dimension invariant restoration, and dimension greedy optimization. By comparing the numerical test with the Kriging interpolation method, it is proved that the algorithm is better in accuracy error and dimension error when restoring the fractal feature data.</p></div>\",\"PeriodicalId\":661,\"journal\":{\"name\":\"Journal of Radioanalytical and Nuclear Chemistry\",\"volume\":\"334 2\",\"pages\":\"1205 - 1215\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radioanalytical and Nuclear Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10967-024-09950-4\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radioanalytical and Nuclear Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10967-024-09950-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

铀是一种稀有而重要的能源矿物。为了研究铀矿床的分布特征,建立了一种基于分形特征和稀疏已知点数据的数据恢复算法。该算法通过确定基函数、保持维数不变恢复和维数贪心优化等步骤,保证了恢复的准确性和分形特征的保留。通过数值试验与Kriging插值方法的比较,证明了该算法在恢复分形特征数据时精度误差和维数误差都有较好的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse restoration of fractal self-similar data and its application in uranium distribution

Uranium is a rare and important energy mineral. In order to study the distribution characteristics of uranium deposits, we establish a data restoration algorithm with fractal features and sparse known point data. The algorithm ensures the accuracy of the restoration and the retention of fractal features through the steps of determining the basis function, preserving the dimension invariant restoration, and dimension greedy optimization. By comparing the numerical test with the Kriging interpolation method, it is proved that the algorithm is better in accuracy error and dimension error when restoring the fractal feature data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
18.80%
发文量
504
审稿时长
2.2 months
期刊介绍: An international periodical publishing original papers, letters, review papers and short communications on nuclear chemistry. The subjects covered include: Nuclear chemistry, Radiochemistry, Radiation chemistry, Radiobiological chemistry, Environmental radiochemistry, Production and control of radioisotopes and labelled compounds, Nuclear power plant chemistry, Nuclear fuel chemistry, Radioanalytical chemistry, Radiation detection and measurement, Nuclear instrumentation and automation, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信