掺\(\textrm{C}_{20}\textrm{H}_{12}\) -苝的单粒子光谱

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Marcel Rodekamp, Evan Berkowitz, Christoph Gäntgen, Stefan Krieg, Thomas Luu, Johann Ostmeyer, Giovanni Pederiva
{"title":"掺\\(\\textrm{C}_{20}\\textrm{H}_{12}\\) -苝的单粒子光谱","authors":"Marcel Rodekamp,&nbsp;Evan Berkowitz,&nbsp;Christoph Gäntgen,&nbsp;Stefan Krieg,&nbsp;Thomas Luu,&nbsp;Johann Ostmeyer,&nbsp;Giovanni Pederiva","doi":"10.1140/epjb/s10051-024-00859-1","DOIUrl":null,"url":null,"abstract":"<p>We present a Hamiltonian Monte Carlo study of doped perylene <span>\\(\\textrm{C}_{20}\\textrm{H}_{12}\\)</span> described with the Hubbard model. Doped perylene can be used for organic light-emitting diodes (OLEDs) or as acceptor material in organic solar cells. Therefore, central to this study is a scan over charge chemical potential. A variational basis of operators allows for the extraction of the single-particle spectrum through a mostly automatic fitting procedure. Finite chemical potential simulations suffer from a sign problem which we ameliorate through contour deformation. The on-site interaction is kept at <span>\\(\\nicefrac {U}{\\kappa }=2\\)</span>. Discretization effects are handled through a continuum limit extrapolation. Our first-principles calculation shows significant deviation from non-interacting results especially at large chemical potentials.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00859-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Single-particle spectrum of doped \\\\(\\\\textrm{C}_{20}\\\\textrm{H}_{12}\\\\)-perylene\",\"authors\":\"Marcel Rodekamp,&nbsp;Evan Berkowitz,&nbsp;Christoph Gäntgen,&nbsp;Stefan Krieg,&nbsp;Thomas Luu,&nbsp;Johann Ostmeyer,&nbsp;Giovanni Pederiva\",\"doi\":\"10.1140/epjb/s10051-024-00859-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a Hamiltonian Monte Carlo study of doped perylene <span>\\\\(\\\\textrm{C}_{20}\\\\textrm{H}_{12}\\\\)</span> described with the Hubbard model. Doped perylene can be used for organic light-emitting diodes (OLEDs) or as acceptor material in organic solar cells. Therefore, central to this study is a scan over charge chemical potential. A variational basis of operators allows for the extraction of the single-particle spectrum through a mostly automatic fitting procedure. Finite chemical potential simulations suffer from a sign problem which we ameliorate through contour deformation. The on-site interaction is kept at <span>\\\\(\\\\nicefrac {U}{\\\\kappa }=2\\\\)</span>. Discretization effects are handled through a continuum limit extrapolation. Our first-principles calculation shows significant deviation from non-interacting results especially at large chemical potentials.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"98 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00859-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00859-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00859-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个哈密顿蒙特卡罗研究掺杂苝\(\textrm{C}_{20}\textrm{H}_{12}\)描述与哈伯德模型。掺杂苝可用于有机发光二极管(oled)或作为有机太阳能电池的受体材料。因此,这项研究的核心是对电荷化学势的扫描。操作符的变分基础允许通过大多数自动拟合程序提取单粒子谱。有限化学势模拟存在一个符号问题,我们通过轮廓变形来改善这个问题。现场互动保持在\(\nicefrac {U}{\kappa }=2\)。离散化效应是通过连续体极限外推来处理的。我们的第一性原理计算显示出与非相互作用结果的显著偏差,特别是在大化学势下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-particle spectrum of doped \(\textrm{C}_{20}\textrm{H}_{12}\)-perylene

We present a Hamiltonian Monte Carlo study of doped perylene \(\textrm{C}_{20}\textrm{H}_{12}\) described with the Hubbard model. Doped perylene can be used for organic light-emitting diodes (OLEDs) or as acceptor material in organic solar cells. Therefore, central to this study is a scan over charge chemical potential. A variational basis of operators allows for the extraction of the single-particle spectrum through a mostly automatic fitting procedure. Finite chemical potential simulations suffer from a sign problem which we ameliorate through contour deformation. The on-site interaction is kept at \(\nicefrac {U}{\kappa }=2\). Discretization effects are handled through a continuum limit extrapolation. Our first-principles calculation shows significant deviation from non-interacting results especially at large chemical potentials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信