基于长短时记忆网络的微震周期性噪声抑制方法研究

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Xulin Wang, Minghui Lv
{"title":"基于长短时记忆网络的微震周期性噪声抑制方法研究","authors":"Xulin Wang,&nbsp;Minghui Lv","doi":"10.1007/s00024-024-03643-5","DOIUrl":null,"url":null,"abstract":"<div><p>The signal-to-noise ratio of ground-truth microseismic data is relatively low. Most of the current noise suppression methods are effective in dealing with random noise but neglect the periodic noise present in the microseismic data, leading to poor denoising effects. To address this issue, this paper proposes a new noise suppression method that combines short-time stationarity tests with Long Short-Term Memory (LSTM) algorithms to suppress periodic noise in microseismic data. By processing both simulated and field data and comparing the results with the traditional Variational Mode Decomposition (VMD) algorithm, the experimental results demonstrate that the method proposed in this paper can more effectively suppress periodic background noise in microseismic data, thereby enhancing the signal-to-noise ratio of the data.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"182 1","pages":"107 - 123"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Microseismic Periodic Noise Suppression Method Based on Long Short-Term Memory Network\",\"authors\":\"Xulin Wang,&nbsp;Minghui Lv\",\"doi\":\"10.1007/s00024-024-03643-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The signal-to-noise ratio of ground-truth microseismic data is relatively low. Most of the current noise suppression methods are effective in dealing with random noise but neglect the periodic noise present in the microseismic data, leading to poor denoising effects. To address this issue, this paper proposes a new noise suppression method that combines short-time stationarity tests with Long Short-Term Memory (LSTM) algorithms to suppress periodic noise in microseismic data. By processing both simulated and field data and comparing the results with the traditional Variational Mode Decomposition (VMD) algorithm, the experimental results demonstrate that the method proposed in this paper can more effectively suppress periodic background noise in microseismic data, thereby enhancing the signal-to-noise ratio of the data.</p></div>\",\"PeriodicalId\":21078,\"journal\":{\"name\":\"pure and applied geophysics\",\"volume\":\"182 1\",\"pages\":\"107 - 123\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"pure and applied geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00024-024-03643-5\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03643-5","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地真微震资料的信噪比较低。目前的降噪方法大多能有效地处理随机噪声,但忽略了微震资料中存在的周期性噪声,导致降噪效果较差。针对这一问题,本文提出了一种将短时平稳性检验与长短期记忆(LSTM)算法相结合的噪声抑制方法,以抑制微震数据中的周期性噪声。通过对模拟数据和现场数据的处理,并与传统的变分模态分解(VMD)算法进行对比,实验结果表明,本文方法可以更有效地抑制微震数据中的周期性背景噪声,从而提高数据的信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Research on Microseismic Periodic Noise Suppression Method Based on Long Short-Term Memory Network

Research on Microseismic Periodic Noise Suppression Method Based on Long Short-Term Memory Network

The signal-to-noise ratio of ground-truth microseismic data is relatively low. Most of the current noise suppression methods are effective in dealing with random noise but neglect the periodic noise present in the microseismic data, leading to poor denoising effects. To address this issue, this paper proposes a new noise suppression method that combines short-time stationarity tests with Long Short-Term Memory (LSTM) algorithms to suppress periodic noise in microseismic data. By processing both simulated and field data and comparing the results with the traditional Variational Mode Decomposition (VMD) algorithm, the experimental results demonstrate that the method proposed in this paper can more effectively suppress periodic background noise in microseismic data, thereby enhancing the signal-to-noise ratio of the data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
pure and applied geophysics
pure and applied geophysics 地学-地球化学与地球物理
CiteScore
4.20
自引率
5.00%
发文量
240
审稿时长
9.8 months
期刊介绍: pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys. Long running journal, founded in 1939 as Geofisica pura e applicata Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research Coverage extends to research topics in oceanic sciences See Instructions for Authors on the right hand side.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信