甲基橙染料提高染料敏化太阳能电池效率的研究

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qurratulain, Safia Akhtar Kazmi, Salman Hameed, Rupendra Kumar Pachauri, Baseem Khan, Ahmed Ali
{"title":"甲基橙染料提高染料敏化太阳能电池效率的研究","authors":"Qurratulain,&nbsp;Safia Akhtar Kazmi,&nbsp;Salman Hameed,&nbsp;Rupendra Kumar Pachauri,&nbsp;Baseem Khan,&nbsp;Ahmed Ali","doi":"10.1007/s40243-025-00296-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, different varieties of dye sensitized solar cells are fabricated by simple fabrication process. In this fabrication extract of butea monosperma flower, methylene blue and methyl orange dyes are used as sensitizers. The photovoltaic performance of dye sensitized solar cells (DSSCs) has been studied. The performances of two different types of photo-electrodes are also tested in this work. The morphology and bandgap of TiO<sub>2</sub> (titanium dioxide) and ZnO (Zinc oxide) was observed from XRD, FTIR spectroscopy and UV-vis Spectrum. It is found that TiO<sub>2</sub> based DSSCs have better performance. It also observed that the current density and efficiency was increased from 7.46 to 12.9 mA/cm<sup>2</sup> and from 1.34 to 6.8% respectively when using methyl orange as a dye. Hence it can be said that methyl orange dye enhanced the photovoltaic performance of DSSC.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00296-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Study on dye-sensitized solar cell efficiency improvement using methyl orange dye\",\"authors\":\"Qurratulain,&nbsp;Safia Akhtar Kazmi,&nbsp;Salman Hameed,&nbsp;Rupendra Kumar Pachauri,&nbsp;Baseem Khan,&nbsp;Ahmed Ali\",\"doi\":\"10.1007/s40243-025-00296-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, different varieties of dye sensitized solar cells are fabricated by simple fabrication process. In this fabrication extract of butea monosperma flower, methylene blue and methyl orange dyes are used as sensitizers. The photovoltaic performance of dye sensitized solar cells (DSSCs) has been studied. The performances of two different types of photo-electrodes are also tested in this work. The morphology and bandgap of TiO<sub>2</sub> (titanium dioxide) and ZnO (Zinc oxide) was observed from XRD, FTIR spectroscopy and UV-vis Spectrum. It is found that TiO<sub>2</sub> based DSSCs have better performance. It also observed that the current density and efficiency was increased from 7.46 to 12.9 mA/cm<sup>2</sup> and from 1.34 to 6.8% respectively when using methyl orange as a dye. Hence it can be said that methyl orange dye enhanced the photovoltaic performance of DSSC.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-025-00296-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-025-00296-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00296-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过简单的制备工艺制备了不同种类的染料敏化太阳能电池。用亚甲基蓝和甲基橙染料作为增敏剂制备丁茶单精子花提取物。研究了染料敏化太阳能电池(DSSCs)的光伏性能。本文还测试了两种不同类型的光电极的性能。通过XRD、FTIR和UV-vis光谱对TiO2(二氧化钛)和ZnO(氧化锌)的形貌和带隙进行了观察。结果表明,TiO2基DSSCs具有更好的性能。以甲基橙为染料时,电流密度和效率分别从7.46 mA/cm2和1.34 mA/cm2提高到12.9 mA/cm2和6.8%。因此可以说甲基橙染料增强了DSSC的光伏性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on dye-sensitized solar cell efficiency improvement using methyl orange dye

In this work, different varieties of dye sensitized solar cells are fabricated by simple fabrication process. In this fabrication extract of butea monosperma flower, methylene blue and methyl orange dyes are used as sensitizers. The photovoltaic performance of dye sensitized solar cells (DSSCs) has been studied. The performances of two different types of photo-electrodes are also tested in this work. The morphology and bandgap of TiO2 (titanium dioxide) and ZnO (Zinc oxide) was observed from XRD, FTIR spectroscopy and UV-vis Spectrum. It is found that TiO2 based DSSCs have better performance. It also observed that the current density and efficiency was increased from 7.46 to 12.9 mA/cm2 and from 1.34 to 6.8% respectively when using methyl orange as a dye. Hence it can be said that methyl orange dye enhanced the photovoltaic performance of DSSC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信