Mohammed A. Al-Anber, Idrees F. Al-Momani, Ahmed K. Hijazi, Suresh Sagadevan, Neda’a Al-Adaileh, Hannen Daoud, Mohammad M. Allaham, Dinara Sobola
{"title":"磷酸盐掺杂硅胶纳米复合材料对水中铀离子的有效修复","authors":"Mohammed A. Al-Anber, Idrees F. Al-Momani, Ahmed K. Hijazi, Suresh Sagadevan, Neda’a Al-Adaileh, Hannen Daoud, Mohammad M. Allaham, Dinara Sobola","doi":"10.1007/s10967-025-09978-0","DOIUrl":null,"url":null,"abstract":"<div><p>An efficient sodium phosphate-doped silica gel nanocomposites (SG-SDP) material was successfully produced and used to collect uranyl ions from an aqueous solution via batch sorption. The nanocomposite was characterized using ATR-FTIR, SEM, XPS, and XRD techniques, and its thermal stability was determined with TGA. The efficiency of SG-SDP to capture uranyl ions was evaluated using a variety of factors, including temperature (<i>T</i>), pH, contact time (<i>t</i>), and initial concentration (<i>C</i><sub><i>i</i></sub>). Under particular conditions (<i>p</i>H = 2, <i>C</i><sub><i>i</i></sub> = 1.0 mg L<sup>−1</sup>, <i>T</i> = 55 °C, 80 rpm, and dosage = 2 g L<sup>−1</sup>), sorption equilibrium is reached in 40 min, resulting in the greatest elimination percentage of 90%. The binding of U(VI) ions conformed to the Langmuir isotherm model (<i>R</i><sup>2</sup> > 0.999), and the interaction followed a pseudo-second-order kinetic model (<i>R</i><sup>2</sup> > 0.999). These positive results indicate that the SG-SDP nanocomposite material can be used effectively to remove diluted uranium (VI) ions from water.</p></div>","PeriodicalId":661,"journal":{"name":"Journal of Radioanalytical and Nuclear Chemistry","volume":"334 2","pages":"1391 - 1416"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphate-doped silica gel nanocomposites for effective uranium ion remediation from water\",\"authors\":\"Mohammed A. Al-Anber, Idrees F. Al-Momani, Ahmed K. Hijazi, Suresh Sagadevan, Neda’a Al-Adaileh, Hannen Daoud, Mohammad M. Allaham, Dinara Sobola\",\"doi\":\"10.1007/s10967-025-09978-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An efficient sodium phosphate-doped silica gel nanocomposites (SG-SDP) material was successfully produced and used to collect uranyl ions from an aqueous solution via batch sorption. The nanocomposite was characterized using ATR-FTIR, SEM, XPS, and XRD techniques, and its thermal stability was determined with TGA. The efficiency of SG-SDP to capture uranyl ions was evaluated using a variety of factors, including temperature (<i>T</i>), pH, contact time (<i>t</i>), and initial concentration (<i>C</i><sub><i>i</i></sub>). Under particular conditions (<i>p</i>H = 2, <i>C</i><sub><i>i</i></sub> = 1.0 mg L<sup>−1</sup>, <i>T</i> = 55 °C, 80 rpm, and dosage = 2 g L<sup>−1</sup>), sorption equilibrium is reached in 40 min, resulting in the greatest elimination percentage of 90%. The binding of U(VI) ions conformed to the Langmuir isotherm model (<i>R</i><sup>2</sup> > 0.999), and the interaction followed a pseudo-second-order kinetic model (<i>R</i><sup>2</sup> > 0.999). These positive results indicate that the SG-SDP nanocomposite material can be used effectively to remove diluted uranium (VI) ions from water.</p></div>\",\"PeriodicalId\":661,\"journal\":{\"name\":\"Journal of Radioanalytical and Nuclear Chemistry\",\"volume\":\"334 2\",\"pages\":\"1391 - 1416\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radioanalytical and Nuclear Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10967-025-09978-0\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radioanalytical and Nuclear Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10967-025-09978-0","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Phosphate-doped silica gel nanocomposites for effective uranium ion remediation from water
An efficient sodium phosphate-doped silica gel nanocomposites (SG-SDP) material was successfully produced and used to collect uranyl ions from an aqueous solution via batch sorption. The nanocomposite was characterized using ATR-FTIR, SEM, XPS, and XRD techniques, and its thermal stability was determined with TGA. The efficiency of SG-SDP to capture uranyl ions was evaluated using a variety of factors, including temperature (T), pH, contact time (t), and initial concentration (Ci). Under particular conditions (pH = 2, Ci = 1.0 mg L−1, T = 55 °C, 80 rpm, and dosage = 2 g L−1), sorption equilibrium is reached in 40 min, resulting in the greatest elimination percentage of 90%. The binding of U(VI) ions conformed to the Langmuir isotherm model (R2 > 0.999), and the interaction followed a pseudo-second-order kinetic model (R2 > 0.999). These positive results indicate that the SG-SDP nanocomposite material can be used effectively to remove diluted uranium (VI) ions from water.
期刊介绍:
An international periodical publishing original papers, letters, review papers and short communications on nuclear chemistry. The subjects covered include: Nuclear chemistry, Radiochemistry, Radiation chemistry, Radiobiological chemistry, Environmental radiochemistry, Production and control of radioisotopes and labelled compounds, Nuclear power plant chemistry, Nuclear fuel chemistry, Radioanalytical chemistry, Radiation detection and measurement, Nuclear instrumentation and automation, etc.