Clifford分析中Jackson微积分的一般问题

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Martha Lina Zimmermann, Swanhild Bernstein, Baruch Schneider
{"title":"Clifford分析中Jackson微积分的一般问题","authors":"Martha Lina Zimmermann,&nbsp;Swanhild Bernstein,&nbsp;Baruch Schneider","doi":"10.1007/s00006-025-01374-x","DOIUrl":null,"url":null,"abstract":"<div><p>We consider an extension of Jackson calculus into higher dimensions and specifically into Clifford analysis for the case of commuting variables. In this case, Dirac is the operator of the first <i>q</i>-partial derivatives (or <i>q</i>-differences) <span>\\({_{q}}\\mathbf {\\mathcal {D}}= \\sum _{i=1}^n e_i\\,{_{q}}\\partial _i\\)</span>, where <span>\\({_{q}}\\partial _i\\)</span> denotes the <i>q</i>-partial derivative with respect to <span>\\(x_i\\)</span>. This Dirac operator factorizes the <i>q</i>-deformed Laplace operator. Similar to the case of classical Clifford analysis, we then consider the <i>q</i>-deformed Euler and Gamma operators and their relations to each other. Nullsolutions of this <i>q</i>-Dirac equation are called <i>q</i>-monogenic. Using the Fischer decomposition, we can decompose the space of homogeneous polynomials into spaces of <i>q</i>-monogenic polynomials. Using the <i>q</i>-deformed Cauchy–Kovalevskaya extension theorem, we can construct <i>q</i>-monogenic functions. Overall, we show the analogies and the differences between classical Clifford and Jackson-Clifford analysis. In particular, <i>q</i>-monogenic functions need not be monogenic and vice versa.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 2","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-025-01374-x.pdf","citationCount":"0","resultStr":"{\"title\":\"General Aspects of Jackson Calculus in Clifford Analysis\",\"authors\":\"Martha Lina Zimmermann,&nbsp;Swanhild Bernstein,&nbsp;Baruch Schneider\",\"doi\":\"10.1007/s00006-025-01374-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider an extension of Jackson calculus into higher dimensions and specifically into Clifford analysis for the case of commuting variables. In this case, Dirac is the operator of the first <i>q</i>-partial derivatives (or <i>q</i>-differences) <span>\\\\({_{q}}\\\\mathbf {\\\\mathcal {D}}= \\\\sum _{i=1}^n e_i\\\\,{_{q}}\\\\partial _i\\\\)</span>, where <span>\\\\({_{q}}\\\\partial _i\\\\)</span> denotes the <i>q</i>-partial derivative with respect to <span>\\\\(x_i\\\\)</span>. This Dirac operator factorizes the <i>q</i>-deformed Laplace operator. Similar to the case of classical Clifford analysis, we then consider the <i>q</i>-deformed Euler and Gamma operators and their relations to each other. Nullsolutions of this <i>q</i>-Dirac equation are called <i>q</i>-monogenic. Using the Fischer decomposition, we can decompose the space of homogeneous polynomials into spaces of <i>q</i>-monogenic polynomials. Using the <i>q</i>-deformed Cauchy–Kovalevskaya extension theorem, we can construct <i>q</i>-monogenic functions. Overall, we show the analogies and the differences between classical Clifford and Jackson-Clifford analysis. In particular, <i>q</i>-monogenic functions need not be monogenic and vice versa.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00006-025-01374-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-025-01374-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-025-01374-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑将Jackson演算扩展到更高的维度,特别是在交换变量的情况下扩展到Clifford分析。在这种情况下,狄拉克是第一个q-偏导数(或q-差)\({_{q}}\mathbf {\mathcal {D}}= \sum _{i=1}^n e_i\,{_{q}}\partial _i\)的算子,其中\({_{q}}\partial _i\)表示关于\(x_i\)的q-偏导数。这个狄拉克算子分解了q变形拉普拉斯算子。与经典Clifford分析类似,我们考虑了q-变形欧拉算子和伽马算子以及它们之间的关系。这个q-Dirac方程的零解称为q-单原方程。利用Fischer分解,我们可以将齐次多项式空间分解为q个单多项式空间。利用q-变形Cauchy-Kovalevskaya扩展定理,构造了q-单基因函数。总的来说,我们展示了经典的克利福德分析和杰克逊-克利福德分析之间的相似之处和差异。特别地,q-单基因函数不必是单基因的,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Aspects of Jackson Calculus in Clifford Analysis

We consider an extension of Jackson calculus into higher dimensions and specifically into Clifford analysis for the case of commuting variables. In this case, Dirac is the operator of the first q-partial derivatives (or q-differences) \({_{q}}\mathbf {\mathcal {D}}= \sum _{i=1}^n e_i\,{_{q}}\partial _i\), where \({_{q}}\partial _i\) denotes the q-partial derivative with respect to \(x_i\). This Dirac operator factorizes the q-deformed Laplace operator. Similar to the case of classical Clifford analysis, we then consider the q-deformed Euler and Gamma operators and their relations to each other. Nullsolutions of this q-Dirac equation are called q-monogenic. Using the Fischer decomposition, we can decompose the space of homogeneous polynomials into spaces of q-monogenic polynomials. Using the q-deformed Cauchy–Kovalevskaya extension theorem, we can construct q-monogenic functions. Overall, we show the analogies and the differences between classical Clifford and Jackson-Clifford analysis. In particular, q-monogenic functions need not be monogenic and vice versa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信