多刺激响应智能材料:用于光致变色和ph开关应用的菁氨酸两亲性自组装

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tzu-Yu Tseng, Yao-Chun Yeh, Wei Hsing, Lien-Chen Fu and Mei-Yu Yeh
{"title":"多刺激响应智能材料:用于光致变色和ph开关应用的菁氨酸两亲性自组装","authors":"Tzu-Yu Tseng, Yao-Chun Yeh, Wei Hsing, Lien-Chen Fu and Mei-Yu Yeh","doi":"10.1039/D4QM00931B","DOIUrl":null,"url":null,"abstract":"<p >Smart hydrogels, known for their stimuli-responsive properties in drug delivery, tissue engineering, and sensors, are typically created using a top-down approach, which limits precise molecular control. In this study, we employ a bottom-up strategy to achieve greater molecular precision, enabling the development of innovative, multi-stimuli-responsive hydrogels. We designed and synthesized asymmetric cyanine amphiphiles incorporating diphenylimidazole as the donor and indole as the acceptor to create molecules with intramolecular charge transfer characteristics. These diphenylimidazole-indole amphiphiles, DPIIH and DPIIF, differ in that DPIIH lacks a fluorine atom at the indole terminal, while DPIIF includes this substitution. Additionally, diphenylimidazole reveals nonplanar conformations and twisted dihedral angles between the phenyl rings at the 4,5-position of imidazole, giving it aggregation-induced emission properties. In contrast to DPIIH, DPIIF can self-assemble into a hydrogel in water, probably due to the hydrogen bonding interactions between DPIIF and water molecules. Through detailed exploration of DPIIF, it was found to exhibit a reversible photochromic effect in polar solvents and can undergo reversible acid–base reactions. The photoisomerization and pH stimulus-response behaviors of DPIIF can be observed <em>via</em> colorimetric and fluorescence changes, making it suitable for applications such as invisible ink and pH sensors. In its hydrogel state, DPIIF reveals reversible photoswitching and pH-switching features, enabling reversible sol–gel transitions. These properties suggest potential applications in both cell culture (gel state) and cell recovery (solution state), offering versatile functionality in biomedical and research settings. Furthermore, the fluorescent properties of the hydrogel can be used to study and visualize cell–material interactions in detail, providing valuable insights for various biological studies.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 5","pages":" 828-837"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-stimuli responsive smart materials: cyanine amphiphile self-assembly for photochromic and pH-switching applications†\",\"authors\":\"Tzu-Yu Tseng, Yao-Chun Yeh, Wei Hsing, Lien-Chen Fu and Mei-Yu Yeh\",\"doi\":\"10.1039/D4QM00931B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Smart hydrogels, known for their stimuli-responsive properties in drug delivery, tissue engineering, and sensors, are typically created using a top-down approach, which limits precise molecular control. In this study, we employ a bottom-up strategy to achieve greater molecular precision, enabling the development of innovative, multi-stimuli-responsive hydrogels. We designed and synthesized asymmetric cyanine amphiphiles incorporating diphenylimidazole as the donor and indole as the acceptor to create molecules with intramolecular charge transfer characteristics. These diphenylimidazole-indole amphiphiles, DPIIH and DPIIF, differ in that DPIIH lacks a fluorine atom at the indole terminal, while DPIIF includes this substitution. Additionally, diphenylimidazole reveals nonplanar conformations and twisted dihedral angles between the phenyl rings at the 4,5-position of imidazole, giving it aggregation-induced emission properties. In contrast to DPIIH, DPIIF can self-assemble into a hydrogel in water, probably due to the hydrogen bonding interactions between DPIIF and water molecules. Through detailed exploration of DPIIF, it was found to exhibit a reversible photochromic effect in polar solvents and can undergo reversible acid–base reactions. The photoisomerization and pH stimulus-response behaviors of DPIIF can be observed <em>via</em> colorimetric and fluorescence changes, making it suitable for applications such as invisible ink and pH sensors. In its hydrogel state, DPIIF reveals reversible photoswitching and pH-switching features, enabling reversible sol–gel transitions. These properties suggest potential applications in both cell culture (gel state) and cell recovery (solution state), offering versatile functionality in biomedical and research settings. Furthermore, the fluorescent properties of the hydrogel can be used to study and visualize cell–material interactions in detail, providing valuable insights for various biological studies.</p>\",\"PeriodicalId\":86,\"journal\":{\"name\":\"Materials Chemistry Frontiers\",\"volume\":\" 5\",\"pages\":\" 828-837\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry Frontiers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00931b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00931b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

智能水凝胶以其在药物输送、组织工程和传感器中的刺激响应特性而闻名,通常使用自上而下的方法创建,这限制了精确的分子控制。在这项研究中,我们采用自下而上的策略来实现更高的分子精度,从而开发出创新的、多刺激响应的水凝胶。以二苯基咪唑为供体,吲哚为受体,设计合成了具有分子内电荷转移特性的不对称菁氨酸两亲分子。这些二苯基咪唑-吲哚两亲化合物DPIIH和DPIIF的不同之处在于DPIIH在吲哚末端缺少一个氟原子,而DPIIF包含这个取代。此外,二苯基咪唑在4,5位苯基环之间显示出非平面构象和扭曲的二面角,使其具有聚集诱导发射的性质。与DPIIH相反,DPIIF可以在水中自组装成水凝胶,这可能是由于DPIIF与水分子之间的氢键相互作用。通过对DPIIF的详细探索,发现它在极性溶剂中表现出可逆的光致变色效应,并能进行可逆的酸碱反应。DPIIF的光异构化和pH刺激响应行为可以通过比色和荧光变化来观察,使其适用于隐形墨水和pH传感器等应用。在水凝胶状态下,DPIIF显示出可逆的光开关和ph开关特性,从而实现可逆的溶胶-凝胶转变。这些特性表明在细胞培养(凝胶状态)和细胞恢复(溶液状态)中都有潜在的应用,在生物医学和研究环境中提供了多种功能。此外,水凝胶的荧光特性可用于详细研究和可视化细胞-物质相互作用,为各种生物学研究提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-stimuli responsive smart materials: cyanine amphiphile self-assembly for photochromic and pH-switching applications†

Multi-stimuli responsive smart materials: cyanine amphiphile self-assembly for photochromic and pH-switching applications†

Smart hydrogels, known for their stimuli-responsive properties in drug delivery, tissue engineering, and sensors, are typically created using a top-down approach, which limits precise molecular control. In this study, we employ a bottom-up strategy to achieve greater molecular precision, enabling the development of innovative, multi-stimuli-responsive hydrogels. We designed and synthesized asymmetric cyanine amphiphiles incorporating diphenylimidazole as the donor and indole as the acceptor to create molecules with intramolecular charge transfer characteristics. These diphenylimidazole-indole amphiphiles, DPIIH and DPIIF, differ in that DPIIH lacks a fluorine atom at the indole terminal, while DPIIF includes this substitution. Additionally, diphenylimidazole reveals nonplanar conformations and twisted dihedral angles between the phenyl rings at the 4,5-position of imidazole, giving it aggregation-induced emission properties. In contrast to DPIIH, DPIIF can self-assemble into a hydrogel in water, probably due to the hydrogen bonding interactions between DPIIF and water molecules. Through detailed exploration of DPIIF, it was found to exhibit a reversible photochromic effect in polar solvents and can undergo reversible acid–base reactions. The photoisomerization and pH stimulus-response behaviors of DPIIF can be observed via colorimetric and fluorescence changes, making it suitable for applications such as invisible ink and pH sensors. In its hydrogel state, DPIIF reveals reversible photoswitching and pH-switching features, enabling reversible sol–gel transitions. These properties suggest potential applications in both cell culture (gel state) and cell recovery (solution state), offering versatile functionality in biomedical and research settings. Furthermore, the fluorescent properties of the hydrogel can be used to study and visualize cell–material interactions in detail, providing valuable insights for various biological studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信