合成方法对Ni 13X和Ni 5A沸石催化剂在CO2甲烷化反应中的理化性能和催化性能的影响

IF 5.2 2区 化学 Q1 CHEMISTRY, APPLIED
Liangyuan Wei , Narendra Kumar , Wim Haije , Janne Peltonen , Markus Peurla , Henrik Grénman , Wiebren de Jong
{"title":"合成方法对Ni 13X和Ni 5A沸石催化剂在CO2甲烷化反应中的理化性能和催化性能的影响","authors":"Liangyuan Wei ,&nbsp;Narendra Kumar ,&nbsp;Wim Haije ,&nbsp;Janne Peltonen ,&nbsp;Markus Peurla ,&nbsp;Henrik Grénman ,&nbsp;Wiebren de Jong","doi":"10.1016/j.cattod.2025.115239","DOIUrl":null,"url":null,"abstract":"<div><div>Zeolite 13X and 5A were modified with nickel using three different methods: evaporation impregnation, deposition precipitation, and ion-exchange for comparison in CO<sub>2</sub> methanation. The catalysts were tested in a lab scale fixed bed reactor and their physico-chemical properties were characterized by XRD, SEM-EDX, TEM, STEM-EDX, nitrogen physisorption, H<sub>2</sub>-TPR and NH<sub>3</sub>-TPD. The physico-chemical characterization results of Ni modified 13X and 5A zeolite catalysts showed that the zeolite structure did not change after the Ni modification by different catalyst synthesis methods, although the surface area and micro-pore volume decreased. The average diameter of NiO and the NiO cluster size range of Ni zeolite catalyst synthesized with ion exchange are smaller than the catalysts prepared by the evaporation impregnation and deposition preparation. Ni dispersed well through 13X, while a lot of Ni appeared on the crystal outer surface of 5A zeolite. Evaporation impregnation and deposition precipitation prepared Ni13X catalysts exhibited a higher activity than ion-exchange prepared samples on CO<sub>2</sub> methanation. The catalyst performance of Ni5A-IE and Ni13X-IE zeolite catalysts, which were synthesized using the ion-exchange method for CO<sub>2</sub> methanation was limited by the actual loading of Ni. The Ni 13X catalysts have less CH<sub>4</sub> selectivity which could be attributed to their lower acidity. Ni13X-EIM catalyst showed good catalytic stability at 360 °C, with no catalyst deactivation during a 200 h catalyst stability test.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"452 ","pages":"Article 115239"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of synthesis methods on the physico-chemical and catalytic properties of Ni 13X and Ni 5A zeolite catalysts in CO2 methanation\",\"authors\":\"Liangyuan Wei ,&nbsp;Narendra Kumar ,&nbsp;Wim Haije ,&nbsp;Janne Peltonen ,&nbsp;Markus Peurla ,&nbsp;Henrik Grénman ,&nbsp;Wiebren de Jong\",\"doi\":\"10.1016/j.cattod.2025.115239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zeolite 13X and 5A were modified with nickel using three different methods: evaporation impregnation, deposition precipitation, and ion-exchange for comparison in CO<sub>2</sub> methanation. The catalysts were tested in a lab scale fixed bed reactor and their physico-chemical properties were characterized by XRD, SEM-EDX, TEM, STEM-EDX, nitrogen physisorption, H<sub>2</sub>-TPR and NH<sub>3</sub>-TPD. The physico-chemical characterization results of Ni modified 13X and 5A zeolite catalysts showed that the zeolite structure did not change after the Ni modification by different catalyst synthesis methods, although the surface area and micro-pore volume decreased. The average diameter of NiO and the NiO cluster size range of Ni zeolite catalyst synthesized with ion exchange are smaller than the catalysts prepared by the evaporation impregnation and deposition preparation. Ni dispersed well through 13X, while a lot of Ni appeared on the crystal outer surface of 5A zeolite. Evaporation impregnation and deposition precipitation prepared Ni13X catalysts exhibited a higher activity than ion-exchange prepared samples on CO<sub>2</sub> methanation. The catalyst performance of Ni5A-IE and Ni13X-IE zeolite catalysts, which were synthesized using the ion-exchange method for CO<sub>2</sub> methanation was limited by the actual loading of Ni. The Ni 13X catalysts have less CH<sub>4</sub> selectivity which could be attributed to their lower acidity. Ni13X-EIM catalyst showed good catalytic stability at 360 °C, with no catalyst deactivation during a 200 h catalyst stability test.</div></div>\",\"PeriodicalId\":264,\"journal\":{\"name\":\"Catalysis Today\",\"volume\":\"452 \",\"pages\":\"Article 115239\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Today\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920586125000574\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125000574","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

采用蒸发浸渍、沉积沉淀和离子交换三种不同的方法对13X和5A沸石进行镍改性,比较其在CO2甲烷化中的作用。在实验室固定床反应器上对催化剂进行了测试,并通过XRD、SEM-EDX、TEM、STEM-EDX、氮气物理吸附、H2-TPR和NH3-TPD对催化剂的理化性质进行了表征。镍改性13X和5A分子筛催化剂的理化表征结果表明,不同催化剂合成方法对分子筛进行镍改性后,分子筛结构没有发生变化,但比表面积和微孔体积减小。离子交换法制备的镍沸石催化剂的NiO平均直径和NiO簇尺寸范围均小于蒸发浸渍和沉积法制备的催化剂。镍在13X中分散良好,而在5A沸石的晶体外表面出现了大量的镍。蒸发浸渍和沉积沉淀制备的Ni13X催化剂比离子交换制备的样品具有更高的CO2甲烷化活性。采用离子交换法合成的Ni5A-IE和Ni13X-IE沸石催化剂的催化性能受到Ni实际负载的限制。Ni 13X催化剂具有较低的CH4选择性,这可能归因于其较低的酸度。Ni13X-EIM催化剂在360°C下表现出良好的催化稳定性,在200 h的催化剂稳定性测试中没有催化剂失活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of synthesis methods on the physico-chemical and catalytic properties of Ni 13X and Ni 5A zeolite catalysts in CO2 methanation
Zeolite 13X and 5A were modified with nickel using three different methods: evaporation impregnation, deposition precipitation, and ion-exchange for comparison in CO2 methanation. The catalysts were tested in a lab scale fixed bed reactor and their physico-chemical properties were characterized by XRD, SEM-EDX, TEM, STEM-EDX, nitrogen physisorption, H2-TPR and NH3-TPD. The physico-chemical characterization results of Ni modified 13X and 5A zeolite catalysts showed that the zeolite structure did not change after the Ni modification by different catalyst synthesis methods, although the surface area and micro-pore volume decreased. The average diameter of NiO and the NiO cluster size range of Ni zeolite catalyst synthesized with ion exchange are smaller than the catalysts prepared by the evaporation impregnation and deposition preparation. Ni dispersed well through 13X, while a lot of Ni appeared on the crystal outer surface of 5A zeolite. Evaporation impregnation and deposition precipitation prepared Ni13X catalysts exhibited a higher activity than ion-exchange prepared samples on CO2 methanation. The catalyst performance of Ni5A-IE and Ni13X-IE zeolite catalysts, which were synthesized using the ion-exchange method for CO2 methanation was limited by the actual loading of Ni. The Ni 13X catalysts have less CH4 selectivity which could be attributed to their lower acidity. Ni13X-EIM catalyst showed good catalytic stability at 360 °C, with no catalyst deactivation during a 200 h catalyst stability test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Today
Catalysis Today 化学-工程:化工
CiteScore
11.50
自引率
3.80%
发文量
573
审稿时长
2.9 months
期刊介绍: Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues. Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信