一种基于双深度q网络的优化地理分布边缘分层,用于移动边缘计算中预测移动感知卸载

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Amir Masoud Rahmani , Amir Haider , Saqib Ali , Shakiba Rajabi , Farhad Soleimanian Gharehchopogh , Parisa Khoshvaght , Mehdi Hosseinzadeh
{"title":"一种基于双深度q网络的优化地理分布边缘分层,用于移动边缘计算中预测移动感知卸载","authors":"Amir Masoud Rahmani ,&nbsp;Amir Haider ,&nbsp;Saqib Ali ,&nbsp;Shakiba Rajabi ,&nbsp;Farhad Soleimanian Gharehchopogh ,&nbsp;Parisa Khoshvaght ,&nbsp;Mehdi Hosseinzadeh","doi":"10.1016/j.adhoc.2025.103804","DOIUrl":null,"url":null,"abstract":"<div><div>In Mobile Edge Computing (MEC), the exponential growth of connected devices and user mobility presents significant challenges in optimizing task offloading, reducing latency, and energy usage. Predictive and adaptive task offloading mechanisms are essential as devices become more mobile and generate demanding tasks. Current methods, such as local computing and random scheduling, struggle to efficiently manage resources and maintain Quality of Service (QoS) in dynamic environments. This paper proposes an optimized Geographic Distributed Edge Layering (GDEL) architecture integrated with Double Deep Q-Networks (DDQN) to enable predictive, mobility-aware offloading. Our model leverages reinforcement learning through a Markov Decision Process (MDP) framework to dynamically allocate resources across distributed edge nodes, making optimal decisions on whether to offload or process tasks locally based on real-time conditions. Simulations show that our model outperforms other methods in key performance metrics, reducing task completion time by up to 48 %, lowering offloading decision latency by 49.3 %, and decreasing energy consumption by 26.5 % compared to traditional models.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"172 ","pages":"Article 103804"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimizing geo-distributed edge layering with double deep Q-networks for predictive mobility-aware offloading in mobile edge computing\",\"authors\":\"Amir Masoud Rahmani ,&nbsp;Amir Haider ,&nbsp;Saqib Ali ,&nbsp;Shakiba Rajabi ,&nbsp;Farhad Soleimanian Gharehchopogh ,&nbsp;Parisa Khoshvaght ,&nbsp;Mehdi Hosseinzadeh\",\"doi\":\"10.1016/j.adhoc.2025.103804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In Mobile Edge Computing (MEC), the exponential growth of connected devices and user mobility presents significant challenges in optimizing task offloading, reducing latency, and energy usage. Predictive and adaptive task offloading mechanisms are essential as devices become more mobile and generate demanding tasks. Current methods, such as local computing and random scheduling, struggle to efficiently manage resources and maintain Quality of Service (QoS) in dynamic environments. This paper proposes an optimized Geographic Distributed Edge Layering (GDEL) architecture integrated with Double Deep Q-Networks (DDQN) to enable predictive, mobility-aware offloading. Our model leverages reinforcement learning through a Markov Decision Process (MDP) framework to dynamically allocate resources across distributed edge nodes, making optimal decisions on whether to offload or process tasks locally based on real-time conditions. Simulations show that our model outperforms other methods in key performance metrics, reducing task completion time by up to 48 %, lowering offloading decision latency by 49.3 %, and decreasing energy consumption by 26.5 % compared to traditional models.</div></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":\"172 \",\"pages\":\"Article 103804\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870525000526\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525000526","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在移动边缘计算(MEC)中,连接设备和用户移动性的指数级增长在优化任务卸载、减少延迟和能源使用方面提出了重大挑战。随着设备的移动性越来越强,任务要求越来越高,预测和自适应任务卸载机制变得至关重要。当前的方法,如本地计算和随机调度,很难在动态环境中有效地管理资源和保持服务质量(QoS)。本文提出了一种优化的地理分布式边缘分层(GDEL)架构,该架构集成了双深度q -网络(DDQN),以实现预测的、移动感知的卸载。我们的模型通过马尔可夫决策过程(MDP)框架利用强化学习,在分布式边缘节点上动态分配资源,根据实时情况对是否卸载或本地处理任务做出最佳决策。仿真表明,我们的模型在关键性能指标上优于其他方法,与传统模型相比,任务完成时间缩短了48%,卸载决策延迟降低了49.3%,能耗降低了26.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimizing geo-distributed edge layering with double deep Q-networks for predictive mobility-aware offloading in mobile edge computing
In Mobile Edge Computing (MEC), the exponential growth of connected devices and user mobility presents significant challenges in optimizing task offloading, reducing latency, and energy usage. Predictive and adaptive task offloading mechanisms are essential as devices become more mobile and generate demanding tasks. Current methods, such as local computing and random scheduling, struggle to efficiently manage resources and maintain Quality of Service (QoS) in dynamic environments. This paper proposes an optimized Geographic Distributed Edge Layering (GDEL) architecture integrated with Double Deep Q-Networks (DDQN) to enable predictive, mobility-aware offloading. Our model leverages reinforcement learning through a Markov Decision Process (MDP) framework to dynamically allocate resources across distributed edge nodes, making optimal decisions on whether to offload or process tasks locally based on real-time conditions. Simulations show that our model outperforms other methods in key performance metrics, reducing task completion time by up to 48 %, lowering offloading decision latency by 49.3 %, and decreasing energy consumption by 26.5 % compared to traditional models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信