具有内置电场的核-双壳Ba0.5Sr0.5TiO3@SiO2@聚乙烯亚胺纳米颗粒增强介电能量存储

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Zihao Guo , Zhihao Sun , Peng Wang , Jingyu Bi , Guangshen Li , Jianshu Wang , Ying Sha , Zhicheng Shi , Lei Qian
{"title":"具有内置电场的核-双壳Ba0.5Sr0.5TiO3@SiO2@聚乙烯亚胺纳米颗粒增强介电能量存储","authors":"Zihao Guo ,&nbsp;Zhihao Sun ,&nbsp;Peng Wang ,&nbsp;Jingyu Bi ,&nbsp;Guangshen Li ,&nbsp;Jianshu Wang ,&nbsp;Ying Sha ,&nbsp;Zhicheng Shi ,&nbsp;Lei Qian","doi":"10.1016/j.compscitech.2025.111107","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a negatively charged SiO<sub>2</sub> inner shell and a positively charged polyethylene imine (PEI) outer shell have coated onto a Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> (BST) nanoparticle to fabricate core-double shell structure with a built-in electric field. This innovative structure is subsequently incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and polymethyl methacrylate (PMMA) hybrid organic matrix to prepare composite films with enhanced dielectric energy storage properties. The SiO<sub>2</sub> inner shell effectively mitigates the uneven electric field distribution caused by dielectric constant mismatch, and the PEI organic outer shell is designed to enhance the interfacial compatibility. Additionally, the dual shell structure exhibits a significant synergistic effect resulting from the built-in electric field, which successfully impedes the acceleration of internal charges and growth of electrical trees. COMSOL Multiphysics simulation results confirm that the core-double shell structure effectively alleviates the electric field distortion, leading to improved breakdown strength. Notably, the composite film demonstrates an energy storage density of 12.72 J/cm<sup>3</sup> under an electric field of 498.96 kV/mm with a low loading of 0.5 wt%, achieving 1.98 times that of the pure matrix. These findings provide valuable insights and directions for advanced polymer-based composite dielectric films with high energy storage densities.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"264 ","pages":"Article 111107"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core-double shell Ba0.5Sr0.5TiO3@SiO2@Polyethylene imine nanoparticles with built-in electric field toward enhancing dielectric energy storage\",\"authors\":\"Zihao Guo ,&nbsp;Zhihao Sun ,&nbsp;Peng Wang ,&nbsp;Jingyu Bi ,&nbsp;Guangshen Li ,&nbsp;Jianshu Wang ,&nbsp;Ying Sha ,&nbsp;Zhicheng Shi ,&nbsp;Lei Qian\",\"doi\":\"10.1016/j.compscitech.2025.111107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a negatively charged SiO<sub>2</sub> inner shell and a positively charged polyethylene imine (PEI) outer shell have coated onto a Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> (BST) nanoparticle to fabricate core-double shell structure with a built-in electric field. This innovative structure is subsequently incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and polymethyl methacrylate (PMMA) hybrid organic matrix to prepare composite films with enhanced dielectric energy storage properties. The SiO<sub>2</sub> inner shell effectively mitigates the uneven electric field distribution caused by dielectric constant mismatch, and the PEI organic outer shell is designed to enhance the interfacial compatibility. Additionally, the dual shell structure exhibits a significant synergistic effect resulting from the built-in electric field, which successfully impedes the acceleration of internal charges and growth of electrical trees. COMSOL Multiphysics simulation results confirm that the core-double shell structure effectively alleviates the electric field distortion, leading to improved breakdown strength. Notably, the composite film demonstrates an energy storage density of 12.72 J/cm<sup>3</sup> under an electric field of 498.96 kV/mm with a low loading of 0.5 wt%, achieving 1.98 times that of the pure matrix. These findings provide valuable insights and directions for advanced polymer-based composite dielectric films with high energy storage densities.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"264 \",\"pages\":\"Article 111107\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353825000752\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825000752","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究将带负电荷的SiO2内壳层和带正电荷的聚乙烯亚胺(PEI)外壳层涂覆在Ba0.5Sr0.5TiO3 (BST)纳米粒子上,制备了具有内置电场的核-双壳结构。这种创新结构随后被纳入聚偏氟乙烯-共六氟丙烯(P(VDF-HFP))和聚甲基丙烯酸甲酯(PMMA)混合有机基质中,以制备具有增强介电储能性能的复合薄膜。SiO2内壳有效缓解了介电常数失配导致的电场分布不均匀,PEI有机外壳设计增强了界面相容性。此外,由于内置电场,双壳结构表现出显著的协同效应,成功地阻碍了内部电荷的加速和电树的生长。COMSOL多物理场仿真结果证实,芯-双壳结构有效缓解了电场畸变,提高了击穿强度。值得注意的是,在498.96 kV/mm的电场下,复合薄膜的储能密度为12.72 J/cm3,低负荷为0.5 wt%,是纯基体的1.98倍。这些发现为开发具有高能量存储密度的聚合物基复合介质薄膜提供了有价值的见解和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Core-double shell Ba0.5Sr0.5TiO3@SiO2@Polyethylene imine nanoparticles with built-in electric field toward enhancing dielectric energy storage

Core-double shell Ba0.5Sr0.5TiO3@SiO2@Polyethylene imine nanoparticles with built-in electric field toward enhancing dielectric energy storage
In this work, a negatively charged SiO2 inner shell and a positively charged polyethylene imine (PEI) outer shell have coated onto a Ba0.5Sr0.5TiO3 (BST) nanoparticle to fabricate core-double shell structure with a built-in electric field. This innovative structure is subsequently incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and polymethyl methacrylate (PMMA) hybrid organic matrix to prepare composite films with enhanced dielectric energy storage properties. The SiO2 inner shell effectively mitigates the uneven electric field distribution caused by dielectric constant mismatch, and the PEI organic outer shell is designed to enhance the interfacial compatibility. Additionally, the dual shell structure exhibits a significant synergistic effect resulting from the built-in electric field, which successfully impedes the acceleration of internal charges and growth of electrical trees. COMSOL Multiphysics simulation results confirm that the core-double shell structure effectively alleviates the electric field distortion, leading to improved breakdown strength. Notably, the composite film demonstrates an energy storage density of 12.72 J/cm3 under an electric field of 498.96 kV/mm with a low loading of 0.5 wt%, achieving 1.98 times that of the pure matrix. These findings provide valuable insights and directions for advanced polymer-based composite dielectric films with high energy storage densities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信