具有酉对合的Azumaya代数的生成子空间

IF 0.7 2区 数学 Q2 MATHEMATICS
Omer Cantor, Uriya A. First
{"title":"具有酉对合的Azumaya代数的生成子空间","authors":"Omer Cantor,&nbsp;Uriya A. First","doi":"10.1016/j.jpaa.2025.107919","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>A</em> be a finite dimensional algebra (possibly with some extra structure) over an infinite field <em>K</em> and let <span><math><mi>r</mi><mo>∈</mo><mi>N</mi></math></span>. The <em>r</em>-tuples <span><math><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> which fail to generate <em>A</em> are the <em>K</em>-points of a closed subvariety <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> of the affine space underlying <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, the codimension of which may be thought of as quantifying how well a generic <em>r</em>-tuple in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> generates <em>A</em>. Taking this intuition one step further, the second author, Reichstein and Williams showed that lower bounds on the codimension of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> (for every <em>r</em>) imply upper bounds on the number of generators of <em>forms</em> of the <em>K</em>-algebra <em>A</em> over finitely generated <em>K</em>-rings. That work also demonstrates how finer information on <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> may be used to construct forms of <em>A</em> which require many elements to generate.</div><div>The dimension and irreducible components of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> are known in a few cases, which in particular lead to upper bounds on the number of generators of Azumaya algebras and Azumaya algebras with involution of the first kind (orthogonal or symplectic). This paper treats the case of Azumaya algebras with a unitary involution by finding the dimension and irreducible components of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> when <em>A</em> is the <em>K</em>-algebra with involution <span><math><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>×</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>,</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo><mo>↦</mo><mo>(</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span>. Our analysis implies that every degree-<em>n</em> Azumaya algebra with a unitary involution over a finitely generated <em>K</em>-ring of Krull dimension <em>d</em> can be generated by <span><math><mo>⌊</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span> elements. We also give examples which require at least half that many elements to generate, by building on the work of the second author, Reichstein and Williams.</div><div>Our method of finding the dimension and irreducible components of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> actually applies to all <em>K</em>-algebras <em>A</em> satisfying a mild assumption.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 4","pages":"Article 107919"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spaces of generators for Azumaya algebras with unitary involution\",\"authors\":\"Omer Cantor,&nbsp;Uriya A. First\",\"doi\":\"10.1016/j.jpaa.2025.107919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>A</em> be a finite dimensional algebra (possibly with some extra structure) over an infinite field <em>K</em> and let <span><math><mi>r</mi><mo>∈</mo><mi>N</mi></math></span>. The <em>r</em>-tuples <span><math><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> which fail to generate <em>A</em> are the <em>K</em>-points of a closed subvariety <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> of the affine space underlying <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, the codimension of which may be thought of as quantifying how well a generic <em>r</em>-tuple in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> generates <em>A</em>. Taking this intuition one step further, the second author, Reichstein and Williams showed that lower bounds on the codimension of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> in <span><math><msup><mrow><mi>A</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> (for every <em>r</em>) imply upper bounds on the number of generators of <em>forms</em> of the <em>K</em>-algebra <em>A</em> over finitely generated <em>K</em>-rings. That work also demonstrates how finer information on <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> may be used to construct forms of <em>A</em> which require many elements to generate.</div><div>The dimension and irreducible components of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> are known in a few cases, which in particular lead to upper bounds on the number of generators of Azumaya algebras and Azumaya algebras with involution of the first kind (orthogonal or symplectic). This paper treats the case of Azumaya algebras with a unitary involution by finding the dimension and irreducible components of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> when <em>A</em> is the <em>K</em>-algebra with involution <span><math><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>×</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>)</mo><mo>,</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo><mo>↦</mo><mo>(</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>,</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>t</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span>. Our analysis implies that every degree-<em>n</em> Azumaya algebra with a unitary involution over a finitely generated <em>K</em>-ring of Krull dimension <em>d</em> can be generated by <span><math><mo>⌊</mo><mfrac><mrow><mi>d</mi></mrow><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span> elements. We also give examples which require at least half that many elements to generate, by building on the work of the second author, Reichstein and Williams.</div><div>Our method of finding the dimension and irreducible components of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> actually applies to all <em>K</em>-algebras <em>A</em> satisfying a mild assumption.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 4\",\"pages\":\"Article 107919\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925000581\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925000581","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设A是无限域K上的有限维代数(可能有一些额外的结构),设r∈N。r-tuples (a1,…,ar)∈基于“增大化现实”技术而无法生成是一个封闭的K-points亚变种Zr仿射空间的潜在的基于“增大化现实”技术,这可能被认为是量化的余维数一般r-tuple如何在基于“增大化现实”技术生成A这个直觉一步,第二作者,Reichstein和威廉姆斯在余维数显示,下界的Zr ar(每r)意味着上界的发电机数量有限生成K-rings K-algebra的形式。这项工作还证明了如何使用Zr的更精细的信息来构建需要许多元素才能生成的A的形式。在一些情况下,Zr的维数和不可约分量是已知的,这特别导致了Azumaya代数和第一类(正交或辛)对合的Azumaya代数的生成子数的上界。本文通过求出当a是具有对合的K代数(Mn(K)×Mn(K),(a,b)∑(bt,at))时Zr的维数和不可约分量,讨论了Azumaya代数具有酉对合的情况。我们的分析表明,在有限生成的Krull维d的k环上具有酉对合的每一个n次Azumaya代数都可以由数组中⌊d2n−2+32⌋元素生成。我们也给出了一些例子,通过建立在第二作者Reichstein和Williams的工作上,至少需要一半的元素来生成。我们找到Zr的维数和不可约分量的方法实际上适用于所有k -代数A,满足一个温和的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spaces of generators for Azumaya algebras with unitary involution
Let A be a finite dimensional algebra (possibly with some extra structure) over an infinite field K and let rN. The r-tuples (a1,,ar)Ar which fail to generate A are the K-points of a closed subvariety Zr of the affine space underlying Ar, the codimension of which may be thought of as quantifying how well a generic r-tuple in Ar generates A. Taking this intuition one step further, the second author, Reichstein and Williams showed that lower bounds on the codimension of Zr in Ar (for every r) imply upper bounds on the number of generators of forms of the K-algebra A over finitely generated K-rings. That work also demonstrates how finer information on Zr may be used to construct forms of A which require many elements to generate.
The dimension and irreducible components of Zr are known in a few cases, which in particular lead to upper bounds on the number of generators of Azumaya algebras and Azumaya algebras with involution of the first kind (orthogonal or symplectic). This paper treats the case of Azumaya algebras with a unitary involution by finding the dimension and irreducible components of Zr when A is the K-algebra with involution (Mn(K)×Mn(K),(a,b)(bt,at)). Our analysis implies that every degree-n Azumaya algebra with a unitary involution over a finitely generated K-ring of Krull dimension d can be generated by d2n2+32 elements. We also give examples which require at least half that many elements to generate, by building on the work of the second author, Reichstein and Williams.
Our method of finding the dimension and irreducible components of Zr actually applies to all K-algebras A satisfying a mild assumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信