{"title":"Serverless federated learning: Decentralized spectrum sensing in heterogeneous networks","authors":"Ferhat Ozgur Catak , Murat Kuzlu , Yaser Dalveren , Gokcen Ozdemir","doi":"10.1016/j.phycom.2025.102634","DOIUrl":null,"url":null,"abstract":"<div><div>Federated learning (FL) has gained more popularity due to the increasing demand for robust and efficient mechanisms to ensure data privacy and security during collaborative model training in the concept of artificial intelligence/machine learning (AI/ML). This study proposes an advanced version of FL without the central server, called a serverless or decentralized federated learning framework, to address the challenge of cooperative spectrum sensing in non-independent and identically distributed (non-IID) environments. The framework leverages local model aggregation at neighboring nodes to improve robustness, privacy, and generalizability. The system incorporates weighted aggregation based on distributional similarity between local datasets using Wasserstein distance. The results demonstrate that the proposed serverless federated learning framework offers a satisfactory performance in terms of accuracy and resilience.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"70 ","pages":"Article 102634"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725000370","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Serverless federated learning: Decentralized spectrum sensing in heterogeneous networks
Federated learning (FL) has gained more popularity due to the increasing demand for robust and efficient mechanisms to ensure data privacy and security during collaborative model training in the concept of artificial intelligence/machine learning (AI/ML). This study proposes an advanced version of FL without the central server, called a serverless or decentralized federated learning framework, to address the challenge of cooperative spectrum sensing in non-independent and identically distributed (non-IID) environments. The framework leverages local model aggregation at neighboring nodes to improve robustness, privacy, and generalizability. The system incorporates weighted aggregation based on distributional similarity between local datasets using Wasserstein distance. The results demonstrate that the proposed serverless federated learning framework offers a satisfactory performance in terms of accuracy and resilience.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.