{"title":"计数能被数字的乘积整除的数","authors":"Qizheng He , Carlo Sanna","doi":"10.1016/j.jnt.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>b</mi><mo>≥</mo><mn>3</mn></math></span> be a positive integer. A natural number is said to be a <em>base-b Zuckerman number</em> if it is divisible by the product of its base-<em>b</em> digits (which consequently must be all nonzero). Let <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be the set of base-<em>b</em> Zuckerman numbers that do not exceed <em>x</em>, and assume that <span><math><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>.</div><div>First, we prove an upper bound of the form <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo><</mo><msup><mrow><mi>x</mi></mrow><mrow><msubsup><mrow><mi>z</mi></mrow><mrow><mi>b</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, where <span><math><msubsup><mrow><mi>z</mi></mrow><mrow><mi>b</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is an effectively computable constant. In particular, we have that <span><math><msubsup><mrow><mi>z</mi></mrow><mrow><mn>10</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>=</mo><mn>0.665</mn><mo>…</mo></math></span>, which improves upon the previous upper bound <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo><</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>0.717</mn></mrow></msup></math></span> due to Sanna. Moreover, we prove that <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo>></mo><msup><mrow><mi>x</mi></mrow><mrow><mn>0.204</mn></mrow></msup></math></span>, which improves upon the previous lower bound <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo>></mo><msup><mrow><mi>x</mi></mrow><mrow><mn>0.122</mn></mrow></msup></math></span>, due to De Koninck and Luca.</div><div>Second, we provide a heuristic suggesting that <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, where <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is an effectively computable constant. In particular, we have that <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>=</mo><mn>0.419</mn><mo>…</mo></math></span>.</div><div>Third, we provide algorithms to count, respectively enumerate, the elements of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, and we determine their complexities. Implementing one of such counting algorithms, we computed <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo></math></span> for <span><math><mi>b</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>12</mn></math></span> and large values of <em>x</em> (depending on <em>b</em>), and we show that the results are consistent with our heuristic.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"272 ","pages":"Pages 34-59"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting numbers that are divisible by the product of their digits\",\"authors\":\"Qizheng He , Carlo Sanna\",\"doi\":\"10.1016/j.jnt.2025.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>b</mi><mo>≥</mo><mn>3</mn></math></span> be a positive integer. A natural number is said to be a <em>base-b Zuckerman number</em> if it is divisible by the product of its base-<em>b</em> digits (which consequently must be all nonzero). Let <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be the set of base-<em>b</em> Zuckerman numbers that do not exceed <em>x</em>, and assume that <span><math><mi>x</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>.</div><div>First, we prove an upper bound of the form <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo><</mo><msup><mrow><mi>x</mi></mrow><mrow><msubsup><mrow><mi>z</mi></mrow><mrow><mi>b</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, where <span><math><msubsup><mrow><mi>z</mi></mrow><mrow><mi>b</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is an effectively computable constant. In particular, we have that <span><math><msubsup><mrow><mi>z</mi></mrow><mrow><mn>10</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>=</mo><mn>0.665</mn><mo>…</mo></math></span>, which improves upon the previous upper bound <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo><</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>0.717</mn></mrow></msup></math></span> due to Sanna. Moreover, we prove that <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo>></mo><msup><mrow><mi>x</mi></mrow><mrow><mn>0.204</mn></mrow></msup></math></span>, which improves upon the previous lower bound <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo>></mo><msup><mrow><mi>x</mi></mrow><mrow><mn>0.122</mn></mrow></msup></math></span>, due to De Koninck and Luca.</div><div>Second, we provide a heuristic suggesting that <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, where <span><math><msub><mrow><mi>z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> is an effectively computable constant. In particular, we have that <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>10</mn></mrow></msub><mo>=</mo><mn>0.419</mn><mo>…</mo></math></span>.</div><div>Third, we provide algorithms to count, respectively enumerate, the elements of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, and we determine their complexities. Implementing one of such counting algorithms, we computed <span><math><mo>|</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo></math></span> for <span><math><mi>b</mi><mo>=</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>12</mn></math></span> and large values of <em>x</em> (depending on <em>b</em>), and we show that the results are consistent with our heuristic.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"272 \",\"pages\":\"Pages 34-59\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25000198\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000198","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Counting numbers that are divisible by the product of their digits
Let be a positive integer. A natural number is said to be a base-b Zuckerman number if it is divisible by the product of its base-b digits (which consequently must be all nonzero). Let be the set of base-b Zuckerman numbers that do not exceed x, and assume that .
First, we prove an upper bound of the form , where is an effectively computable constant. In particular, we have that , which improves upon the previous upper bound due to Sanna. Moreover, we prove that , which improves upon the previous lower bound , due to De Koninck and Luca.
Second, we provide a heuristic suggesting that , where is an effectively computable constant. In particular, we have that .
Third, we provide algorithms to count, respectively enumerate, the elements of , and we determine their complexities. Implementing one of such counting algorithms, we computed for and large values of x (depending on b), and we show that the results are consistent with our heuristic.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.