2023年7月蒙古高原局地温度异常对中国北方强降水事件的影响

IF 6.9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Yunchang Cao , Ling Zhang , Haijun Zhao , Zhun Guo
{"title":"2023年7月蒙古高原局地温度异常对中国北方强降水事件的影响","authors":"Yunchang Cao ,&nbsp;Ling Zhang ,&nbsp;Haijun Zhao ,&nbsp;Zhun Guo","doi":"10.1016/j.wace.2025.100758","DOIUrl":null,"url":null,"abstract":"<div><div>From July 29th to August 2nd, 2023, an exceptional precipitation event, referred as 237HRE, struck North China, causing widespread flooding in the Haihe River basin. Utilizing reanalysis data and the Weather Research and Forecasting (WRF) model, this study delves into the reasons behind the unusual westward extension and northward shift of the Western Pacific Subtropical High (WPSH), as well as the extreme precipitation during 237HRE. Our findings indicate that during 237HRE, the WPSH underwent a significant anomalous westward extension and northward shift, forming a stable and enduring high-pressure barrier. This barrier caused the typhoon's residual vortex and water vapor transport to stagnate in North China, thereby creating the conditions for this extreme precipitation event.</div><div>The diagnostics reveal that the positive temperature anomaly over the Mongolian Plateau intensified local temperature advection, contributing to the enhancement and northwestward extension of the WPSH. This mechanism has been thoroughly validated using the Interactive Global Grand Ensemble (TIGGE) dataset, that better forecasts of 237HRE usually benefited from better forecasts of the WPSH. Additionally, WRF sensitivity experiments further support this mechanism, demonstrating that when the positive temperature anomalies are weakened, the WPSH retreats eastward and weakens considerably, as well as the extreme event. In particular, the typhoon residual vortex moves to the southeast at an increased speed with the influence of steering currents. Under these atmospheric circulation configurations, the moisture transport pathway also shifts eastward, altering its relative relationship with the Taihang Mountains, leading to rainfall patterns expanding eastward and the intensity weakening in North China. These findings highlight the crucial role of local temperature anomalies over Mongolia in modulating the position of WPSH, which is essential for understanding and predicting the extreme precipitation events in North China.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"48 ","pages":"Article 100758"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of the local temperature anomalies over Mongolian Plateau on heavy rainfall events in north China during July 2023\",\"authors\":\"Yunchang Cao ,&nbsp;Ling Zhang ,&nbsp;Haijun Zhao ,&nbsp;Zhun Guo\",\"doi\":\"10.1016/j.wace.2025.100758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>From July 29th to August 2nd, 2023, an exceptional precipitation event, referred as 237HRE, struck North China, causing widespread flooding in the Haihe River basin. Utilizing reanalysis data and the Weather Research and Forecasting (WRF) model, this study delves into the reasons behind the unusual westward extension and northward shift of the Western Pacific Subtropical High (WPSH), as well as the extreme precipitation during 237HRE. Our findings indicate that during 237HRE, the WPSH underwent a significant anomalous westward extension and northward shift, forming a stable and enduring high-pressure barrier. This barrier caused the typhoon's residual vortex and water vapor transport to stagnate in North China, thereby creating the conditions for this extreme precipitation event.</div><div>The diagnostics reveal that the positive temperature anomaly over the Mongolian Plateau intensified local temperature advection, contributing to the enhancement and northwestward extension of the WPSH. This mechanism has been thoroughly validated using the Interactive Global Grand Ensemble (TIGGE) dataset, that better forecasts of 237HRE usually benefited from better forecasts of the WPSH. Additionally, WRF sensitivity experiments further support this mechanism, demonstrating that when the positive temperature anomalies are weakened, the WPSH retreats eastward and weakens considerably, as well as the extreme event. In particular, the typhoon residual vortex moves to the southeast at an increased speed with the influence of steering currents. Under these atmospheric circulation configurations, the moisture transport pathway also shifts eastward, altering its relative relationship with the Taihang Mountains, leading to rainfall patterns expanding eastward and the intensity weakening in North China. These findings highlight the crucial role of local temperature anomalies over Mongolia in modulating the position of WPSH, which is essential for understanding and predicting the extreme precipitation events in North China.</div></div>\",\"PeriodicalId\":48630,\"journal\":{\"name\":\"Weather and Climate Extremes\",\"volume\":\"48 \",\"pages\":\"Article 100758\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Climate Extremes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212094725000167\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094725000167","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

2023年7月29日至8月2日,华北地区发生237HRE异常降水,造成海河流域大范围洪涝灾害。利用再分析资料和气象研究与预报(WRF)模式,探讨了237HRE期间西太平洋副热带高压(WPSH)异常西伸北移及极端降水的原因。结果表明,237HRE期间,副高发生了明显的异常西伸北移,形成了一个稳定持久的高压屏障。这一屏障使得台风残余涡和水汽输送在华北地区停滞,从而为这次极端降水事件创造了条件。诊断结果表明,蒙古高原上空的温度正异常增强了局地温度平流,促进了副高的增强和向西北扩展。这一机制已经通过交互式全球大集合(TIGGE)数据集得到了彻底的验证,即更好的237HRE预报通常受益于更好的WPSH预报。WRF敏感性实验进一步支持了这一机制,表明当温度正异常减弱时,副高东退并显著减弱,极端事件也随之发生。特别是台风残涡在转向流的影响下,以加快的速度向东南移动。在这种大气环流配置下,水汽输送路径也东移,改变了其与太行山的相对关系,导致华北地区降水模式东扩,强度减弱。这些发现强调了蒙古地区局地温度异常在调节副高位置中的重要作用,这对于理解和预测华北地区的极端降水事件至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impacts of the local temperature anomalies over Mongolian Plateau on heavy rainfall events in north China during July 2023
From July 29th to August 2nd, 2023, an exceptional precipitation event, referred as 237HRE, struck North China, causing widespread flooding in the Haihe River basin. Utilizing reanalysis data and the Weather Research and Forecasting (WRF) model, this study delves into the reasons behind the unusual westward extension and northward shift of the Western Pacific Subtropical High (WPSH), as well as the extreme precipitation during 237HRE. Our findings indicate that during 237HRE, the WPSH underwent a significant anomalous westward extension and northward shift, forming a stable and enduring high-pressure barrier. This barrier caused the typhoon's residual vortex and water vapor transport to stagnate in North China, thereby creating the conditions for this extreme precipitation event.
The diagnostics reveal that the positive temperature anomaly over the Mongolian Plateau intensified local temperature advection, contributing to the enhancement and northwestward extension of the WPSH. This mechanism has been thoroughly validated using the Interactive Global Grand Ensemble (TIGGE) dataset, that better forecasts of 237HRE usually benefited from better forecasts of the WPSH. Additionally, WRF sensitivity experiments further support this mechanism, demonstrating that when the positive temperature anomalies are weakened, the WPSH retreats eastward and weakens considerably, as well as the extreme event. In particular, the typhoon residual vortex moves to the southeast at an increased speed with the influence of steering currents. Under these atmospheric circulation configurations, the moisture transport pathway also shifts eastward, altering its relative relationship with the Taihang Mountains, leading to rainfall patterns expanding eastward and the intensity weakening in North China. These findings highlight the crucial role of local temperature anomalies over Mongolia in modulating the position of WPSH, which is essential for understanding and predicting the extreme precipitation events in North China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Weather and Climate Extremes
Weather and Climate Extremes Earth and Planetary Sciences-Atmospheric Science
CiteScore
11.00
自引率
7.50%
发文量
102
审稿时长
33 weeks
期刊介绍: Weather and Climate Extremes Target Audience: Academics Decision makers International development agencies Non-governmental organizations (NGOs) Civil society Focus Areas: Research in weather and climate extremes Monitoring and early warning systems Assessment of vulnerability and impacts Developing and implementing intervention policies Effective risk management and adaptation practices Engagement of local communities in adopting coping strategies Information and communication strategies tailored to local and regional needs and circumstances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信