基于氢键活化柔性有机半导体纺织品的超高电流密度摩擦伏纳米发电机

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guoxu Liu, Beibei Fan, Youchao Qi, Kai Han, Jie Cao, Xianpeng Fu, Zhaozheng Wang, Tianzhao Bu, Jianhua Zeng, Sicheng Dong, Likun Gong, Zhong Lin Wang and Chi Zhang*, 
{"title":"基于氢键活化柔性有机半导体纺织品的超高电流密度摩擦伏纳米发电机","authors":"Guoxu Liu,&nbsp;Beibei Fan,&nbsp;Youchao Qi,&nbsp;Kai Han,&nbsp;Jie Cao,&nbsp;Xianpeng Fu,&nbsp;Zhaozheng Wang,&nbsp;Tianzhao Bu,&nbsp;Jianhua Zeng,&nbsp;Sicheng Dong,&nbsp;Likun Gong,&nbsp;Zhong Lin Wang and Chi Zhang*,&nbsp;","doi":"10.1021/acsnano.4c1101010.1021/acsnano.4c11010","DOIUrl":null,"url":null,"abstract":"<p >The polymer-based triboelectric nanogenerator (TENG) has long grappled with the constraint of limited current density (CD), whereas semiconductor-based triboelectric nanogenerators, using the tribovoltaic effect, have shown promising potential for achieving high current density. This study introduces an effective solution─a direct current tribovoltaic nanogenerator with ultrahigh current density─founded on a flexible organic semiconductor textile activated by solvents. By introducing 95% ethyl alcohol, an ultrahigh current density of 8.75 A/m<sup>2</sup> and peak power density of 1.07 W/m<sup>2</sup> are demonstrated, marking a striking enhancement of 438-fold and 170-fold, respectively, in comparison to the friction surface without 95% ethyl alcohol. The activation mechanism is that the poly(vinyl alcohol) dissolution by solvents exposes more PEDOT:PSS, and the formation of hydrogen bonds with PSS– releases more active PEDOT+. This advancement finds practical utility, as evidenced by successful demonstrations involving cell phone charging and small motor propulsion. The breakthrough unveiled in this work presents vistas for the widespread application of flexible organic semiconductor textile-based tribovoltaic nanogenerators, offering exciting opportunities for biomechanical energy harvesting.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 7","pages":"6771–6783 6771–6783"},"PeriodicalIF":16.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh-Current-Density Tribovoltaic Nanogenerators Based on Hydrogen Bond-Activated Flexible Organic Semiconductor Textiles\",\"authors\":\"Guoxu Liu,&nbsp;Beibei Fan,&nbsp;Youchao Qi,&nbsp;Kai Han,&nbsp;Jie Cao,&nbsp;Xianpeng Fu,&nbsp;Zhaozheng Wang,&nbsp;Tianzhao Bu,&nbsp;Jianhua Zeng,&nbsp;Sicheng Dong,&nbsp;Likun Gong,&nbsp;Zhong Lin Wang and Chi Zhang*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1101010.1021/acsnano.4c11010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The polymer-based triboelectric nanogenerator (TENG) has long grappled with the constraint of limited current density (CD), whereas semiconductor-based triboelectric nanogenerators, using the tribovoltaic effect, have shown promising potential for achieving high current density. This study introduces an effective solution─a direct current tribovoltaic nanogenerator with ultrahigh current density─founded on a flexible organic semiconductor textile activated by solvents. By introducing 95% ethyl alcohol, an ultrahigh current density of 8.75 A/m<sup>2</sup> and peak power density of 1.07 W/m<sup>2</sup> are demonstrated, marking a striking enhancement of 438-fold and 170-fold, respectively, in comparison to the friction surface without 95% ethyl alcohol. The activation mechanism is that the poly(vinyl alcohol) dissolution by solvents exposes more PEDOT:PSS, and the formation of hydrogen bonds with PSS– releases more active PEDOT+. This advancement finds practical utility, as evidenced by successful demonstrations involving cell phone charging and small motor propulsion. The breakthrough unveiled in this work presents vistas for the widespread application of flexible organic semiconductor textile-based tribovoltaic nanogenerators, offering exciting opportunities for biomechanical energy harvesting.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 7\",\"pages\":\"6771–6783 6771–6783\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c11010\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c11010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合物基摩擦电纳米发电机(TENG)长期以来一直受到电流密度有限(CD)的限制,而基于半导体的摩擦电纳米发电机,利用摩擦伏打效应,已经显示出实现高电流密度的良好潜力。本研究介绍了一种有效的解决方案──一种具有超高电流密度的直流摩擦伏纳米发电机──建立在溶剂活化的柔性有机半导体纺织品上。通过引入95%乙醇,证明了8.75 A/m2的超高电流密度和1.07 W/m2的峰值功率密度,与没有95%乙醇的摩擦表面相比,分别显著增强了438倍和170倍。其活化机制是溶剂溶解聚乙烯醇使PEDOT:PSS暴露更多,与PSS -形成氢键释放更多活性的PEDOT+。手机充电和小型电机推进的成功演示证明了这一进步的实用性。这项工作的突破为基于柔性有机半导体纺织品的摩擦伏打纳米发电机的广泛应用提供了前景,为生物力学能量收集提供了令人兴奋的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrahigh-Current-Density Tribovoltaic Nanogenerators Based on Hydrogen Bond-Activated Flexible Organic Semiconductor Textiles

Ultrahigh-Current-Density Tribovoltaic Nanogenerators Based on Hydrogen Bond-Activated Flexible Organic Semiconductor Textiles

The polymer-based triboelectric nanogenerator (TENG) has long grappled with the constraint of limited current density (CD), whereas semiconductor-based triboelectric nanogenerators, using the tribovoltaic effect, have shown promising potential for achieving high current density. This study introduces an effective solution─a direct current tribovoltaic nanogenerator with ultrahigh current density─founded on a flexible organic semiconductor textile activated by solvents. By introducing 95% ethyl alcohol, an ultrahigh current density of 8.75 A/m2 and peak power density of 1.07 W/m2 are demonstrated, marking a striking enhancement of 438-fold and 170-fold, respectively, in comparison to the friction surface without 95% ethyl alcohol. The activation mechanism is that the poly(vinyl alcohol) dissolution by solvents exposes more PEDOT:PSS, and the formation of hydrogen bonds with PSS– releases more active PEDOT+. This advancement finds practical utility, as evidenced by successful demonstrations involving cell phone charging and small motor propulsion. The breakthrough unveiled in this work presents vistas for the widespread application of flexible organic semiconductor textile-based tribovoltaic nanogenerators, offering exciting opportunities for biomechanical energy harvesting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信