Giorgio Felizzato, Giuliano Iacobellis, Nicola Liberatore, Sandro Mengali, Martin Sabo, Patrizia Scandurra, Roberto Viola and Francesco Saverio Romolo*,
{"title":"机器学习驱动的数据融合的色谱,等离子体图,和法医感兴趣的化合物的红外光谱","authors":"Giorgio Felizzato, Giuliano Iacobellis, Nicola Liberatore, Sandro Mengali, Martin Sabo, Patrizia Scandurra, Roberto Viola and Francesco Saverio Romolo*, ","doi":"10.1021/acsomega.4c1010710.1021/acsomega.4c10107","DOIUrl":null,"url":null,"abstract":"<p >Achieving fast analytical results on-site with the highest possible accuracy in forensic analyses is crucial for investigations. While portable sensors are essential for crime scene analysis, they often face limitations in sensitivity and specificity, especially due to environmental factors. Data fusion (DF) techniques can enhance accuracy and reliability by combining information from multiple sensors. This study develops different DF approaches using data from two sensors: ion mobility spectrometry (IMS) and gas chromatography-quartz-enhanced photoacoustic spectroscopy (GC-QEPAS), aiming to improve the safety of crime scene operators and the accuracy of on-site forensic analysis. Two DF approaches were developed for acetone and DMMP: low-level (LLDF) and mid-level (MLDF), meanwhile a high-level (HLDF) approach was applied to TATP. LLDF concatenated preprocessed data matrices, while MLDF employed principal component analysis for feature extraction. LLDF and MLDF used one-class support vector machines (OC-SVM) for classification, while HLDF combined OC-SVM for IMS and SIMCA for GC-QEPAS. Sensor location within crime scenes was established using traditional measuring tape and laser distance meters, with a 1 m cutoff distance between sensors deemed appropriate for indoor crime scenes. LLDF achieved high accuracy but was sensitive to concentration variations, while MLDF enhanced the classification robustness. HLDF allowed for independent sensor use in real scenarios. All of the methods reached 100% accuracy for DMMP and acetone, and the MLDF approach was the fastest among the DF methods, demonstrating its potential for rapid applications. DF approaches can significantly enhance the safety and accuracy of forensic investigations, with future research planned to extend data sets and include more sensors.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 7","pages":"7048–7057 7048–7057"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c10107","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Driven Data Fusion of Chromatograms, Plasmagrams, and IR Spectra of Chemical Compounds of Forensic Interest\",\"authors\":\"Giorgio Felizzato, Giuliano Iacobellis, Nicola Liberatore, Sandro Mengali, Martin Sabo, Patrizia Scandurra, Roberto Viola and Francesco Saverio Romolo*, \",\"doi\":\"10.1021/acsomega.4c1010710.1021/acsomega.4c10107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving fast analytical results on-site with the highest possible accuracy in forensic analyses is crucial for investigations. While portable sensors are essential for crime scene analysis, they often face limitations in sensitivity and specificity, especially due to environmental factors. Data fusion (DF) techniques can enhance accuracy and reliability by combining information from multiple sensors. This study develops different DF approaches using data from two sensors: ion mobility spectrometry (IMS) and gas chromatography-quartz-enhanced photoacoustic spectroscopy (GC-QEPAS), aiming to improve the safety of crime scene operators and the accuracy of on-site forensic analysis. Two DF approaches were developed for acetone and DMMP: low-level (LLDF) and mid-level (MLDF), meanwhile a high-level (HLDF) approach was applied to TATP. LLDF concatenated preprocessed data matrices, while MLDF employed principal component analysis for feature extraction. LLDF and MLDF used one-class support vector machines (OC-SVM) for classification, while HLDF combined OC-SVM for IMS and SIMCA for GC-QEPAS. Sensor location within crime scenes was established using traditional measuring tape and laser distance meters, with a 1 m cutoff distance between sensors deemed appropriate for indoor crime scenes. LLDF achieved high accuracy but was sensitive to concentration variations, while MLDF enhanced the classification robustness. HLDF allowed for independent sensor use in real scenarios. All of the methods reached 100% accuracy for DMMP and acetone, and the MLDF approach was the fastest among the DF methods, demonstrating its potential for rapid applications. DF approaches can significantly enhance the safety and accuracy of forensic investigations, with future research planned to extend data sets and include more sensors.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 7\",\"pages\":\"7048–7057 7048–7057\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c10107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c10107\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c10107","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine Learning-Driven Data Fusion of Chromatograms, Plasmagrams, and IR Spectra of Chemical Compounds of Forensic Interest
Achieving fast analytical results on-site with the highest possible accuracy in forensic analyses is crucial for investigations. While portable sensors are essential for crime scene analysis, they often face limitations in sensitivity and specificity, especially due to environmental factors. Data fusion (DF) techniques can enhance accuracy and reliability by combining information from multiple sensors. This study develops different DF approaches using data from two sensors: ion mobility spectrometry (IMS) and gas chromatography-quartz-enhanced photoacoustic spectroscopy (GC-QEPAS), aiming to improve the safety of crime scene operators and the accuracy of on-site forensic analysis. Two DF approaches were developed for acetone and DMMP: low-level (LLDF) and mid-level (MLDF), meanwhile a high-level (HLDF) approach was applied to TATP. LLDF concatenated preprocessed data matrices, while MLDF employed principal component analysis for feature extraction. LLDF and MLDF used one-class support vector machines (OC-SVM) for classification, while HLDF combined OC-SVM for IMS and SIMCA for GC-QEPAS. Sensor location within crime scenes was established using traditional measuring tape and laser distance meters, with a 1 m cutoff distance between sensors deemed appropriate for indoor crime scenes. LLDF achieved high accuracy but was sensitive to concentration variations, while MLDF enhanced the classification robustness. HLDF allowed for independent sensor use in real scenarios. All of the methods reached 100% accuracy for DMMP and acetone, and the MLDF approach was the fastest among the DF methods, demonstrating its potential for rapid applications. DF approaches can significantly enhance the safety and accuracy of forensic investigations, with future research planned to extend data sets and include more sensors.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.