{"title":"微纳双尺度结构铍铜表面自组装超疏水防冰涂层","authors":"Hejian Zhou, Liang Ning, Wei Luo and Huiqun Liu*, ","doi":"10.1021/acs.langmuir.4c0487510.1021/acs.langmuir.4c04875","DOIUrl":null,"url":null,"abstract":"<p >Ice formation has long been a major issue troubling the aviation industry, leading to significant energy consumption annually in addressing this problem. Superhydrophobic coatings are an important passive anti-icing strategy. Although beryllium copper alloys are widely used in the aviation field, the superhydrophobic anti-icing coatings reported in the literature primarily use copper as the substrate, with few studies focusing on beryllium copper alloys. In this study, two reactions were employed to construct rough structures at different scales on the surface of beryllium–copper alloy, a material commonly used in the aviation industry. These structures include micrometer-scale acid-etched morphology and needle-like/layered structures with thicknesses in tens of nanometers, as well as a combination of both, forming a dual micro–nano scale structure. This hierarchical dual-scale structure is believed to capture more air upon contact with water droplets, thereby offering excellent superhydrophobicity and anti-icing properties. After surface modification with 1<i>H</i>,1<i>H</i>,2<i>H</i>,2<i>H</i>-perfluorodecanethiol (PFDT), a static contact angle exceeding 165° and a rolling angle as low as 2.9° were achieved on the dual-scale micro–nano surface, along with excellent ice formation delay capabilities, compared to the alloy substrate, the icing was delayed by 1407 s. As a result, water droplets are unlikely to remain on and freeze on this superhydrophobic surface. Based on the experimental results, we have summarized the potential roles of the micro- and nanoscale hierarchical structures. We propose that the microscale rough structures provide higher mechanical strength, effective anti-icing, and anticorrosion properties, while the nanoscale structures contribute to enhanced hydrophobicity and an improved corrosion potential.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 7","pages":"4806–4816 4806–4816"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Assembled Superhydrophobic Coating on the Beryllium Copper Surface with a Micro–Nano Dual-Scale Structure for Anti-icing\",\"authors\":\"Hejian Zhou, Liang Ning, Wei Luo and Huiqun Liu*, \",\"doi\":\"10.1021/acs.langmuir.4c0487510.1021/acs.langmuir.4c04875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ice formation has long been a major issue troubling the aviation industry, leading to significant energy consumption annually in addressing this problem. Superhydrophobic coatings are an important passive anti-icing strategy. Although beryllium copper alloys are widely used in the aviation field, the superhydrophobic anti-icing coatings reported in the literature primarily use copper as the substrate, with few studies focusing on beryllium copper alloys. In this study, two reactions were employed to construct rough structures at different scales on the surface of beryllium–copper alloy, a material commonly used in the aviation industry. These structures include micrometer-scale acid-etched morphology and needle-like/layered structures with thicknesses in tens of nanometers, as well as a combination of both, forming a dual micro–nano scale structure. This hierarchical dual-scale structure is believed to capture more air upon contact with water droplets, thereby offering excellent superhydrophobicity and anti-icing properties. After surface modification with 1<i>H</i>,1<i>H</i>,2<i>H</i>,2<i>H</i>-perfluorodecanethiol (PFDT), a static contact angle exceeding 165° and a rolling angle as low as 2.9° were achieved on the dual-scale micro–nano surface, along with excellent ice formation delay capabilities, compared to the alloy substrate, the icing was delayed by 1407 s. As a result, water droplets are unlikely to remain on and freeze on this superhydrophobic surface. Based on the experimental results, we have summarized the potential roles of the micro- and nanoscale hierarchical structures. We propose that the microscale rough structures provide higher mechanical strength, effective anti-icing, and anticorrosion properties, while the nanoscale structures contribute to enhanced hydrophobicity and an improved corrosion potential.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 7\",\"pages\":\"4806–4816 4806–4816\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04875\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04875","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-Assembled Superhydrophobic Coating on the Beryllium Copper Surface with a Micro–Nano Dual-Scale Structure for Anti-icing
Ice formation has long been a major issue troubling the aviation industry, leading to significant energy consumption annually in addressing this problem. Superhydrophobic coatings are an important passive anti-icing strategy. Although beryllium copper alloys are widely used in the aviation field, the superhydrophobic anti-icing coatings reported in the literature primarily use copper as the substrate, with few studies focusing on beryllium copper alloys. In this study, two reactions were employed to construct rough structures at different scales on the surface of beryllium–copper alloy, a material commonly used in the aviation industry. These structures include micrometer-scale acid-etched morphology and needle-like/layered structures with thicknesses in tens of nanometers, as well as a combination of both, forming a dual micro–nano scale structure. This hierarchical dual-scale structure is believed to capture more air upon contact with water droplets, thereby offering excellent superhydrophobicity and anti-icing properties. After surface modification with 1H,1H,2H,2H-perfluorodecanethiol (PFDT), a static contact angle exceeding 165° and a rolling angle as low as 2.9° were achieved on the dual-scale micro–nano surface, along with excellent ice formation delay capabilities, compared to the alloy substrate, the icing was delayed by 1407 s. As a result, water droplets are unlikely to remain on and freeze on this superhydrophobic surface. Based on the experimental results, we have summarized the potential roles of the micro- and nanoscale hierarchical structures. We propose that the microscale rough structures provide higher mechanical strength, effective anti-icing, and anticorrosion properties, while the nanoscale structures contribute to enhanced hydrophobicity and an improved corrosion potential.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).