位置敏感的逐域可切换铁电忆阻器

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Felix Risch, Panagiotis Koutsogiannis, Yuri Tikhonov, Anna G. Razumnaya, César Magén, José A. Pardo, Igor Lukyanchuk and Igor Stolichnov*, 
{"title":"位置敏感的逐域可切换铁电忆阻器","authors":"Felix Risch,&nbsp;Panagiotis Koutsogiannis,&nbsp;Yuri Tikhonov,&nbsp;Anna G. Razumnaya,&nbsp;César Magén,&nbsp;José A. Pardo,&nbsp;Igor Lukyanchuk and Igor Stolichnov*,&nbsp;","doi":"10.1021/acsnano.4c1472710.1021/acsnano.4c14727","DOIUrl":null,"url":null,"abstract":"<p >Domain-wall electronics based on the tunable transport in reconfigurable ferroic domain interfaces offer a promising platform for in-memory computing approaches and reprogrammable neuromorphic circuits. While conductive domain walls have been discovered in many materials, progress in the field is hindered by high-voltage operations, stability of the resistive states and limited control over the domain wall dynamics. Here, we show nonvolatile memristive functionalities based on precisely controllable conductive domain walls in tetragonal Pb(Zr,Ti)O<sub>3</sub> thin films within a two-terminal parallel-plate capacitor geometry. Individual submicron domains can be manipulated selectively by position-sensitive low-voltage operations to address distinct resistive states with nanoampere-range conduction readout. Quantitative phase-field simulations reveal a complex pattern of interpenetrating a- and c-domain associated with the formation of 2D conducting layers at the intertwined regions and the emergence of 3D percolation channels of extraordinary high conductivity. Subnanometer resolution polarization mapping experimentally proves the existence of such extensive segments of charged tail-to-tail domain walls with unconventional structure at the ferroelastic-ferroelectric domain boundaries.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 7","pages":"6993–7004 6993–7004"},"PeriodicalIF":16.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c14727","citationCount":"0","resultStr":"{\"title\":\"Position-Sensitive Domain-by-Domain Switchable Ferroelectric Memristor\",\"authors\":\"Felix Risch,&nbsp;Panagiotis Koutsogiannis,&nbsp;Yuri Tikhonov,&nbsp;Anna G. Razumnaya,&nbsp;César Magén,&nbsp;José A. Pardo,&nbsp;Igor Lukyanchuk and Igor Stolichnov*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1472710.1021/acsnano.4c14727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Domain-wall electronics based on the tunable transport in reconfigurable ferroic domain interfaces offer a promising platform for in-memory computing approaches and reprogrammable neuromorphic circuits. While conductive domain walls have been discovered in many materials, progress in the field is hindered by high-voltage operations, stability of the resistive states and limited control over the domain wall dynamics. Here, we show nonvolatile memristive functionalities based on precisely controllable conductive domain walls in tetragonal Pb(Zr,Ti)O<sub>3</sub> thin films within a two-terminal parallel-plate capacitor geometry. Individual submicron domains can be manipulated selectively by position-sensitive low-voltage operations to address distinct resistive states with nanoampere-range conduction readout. Quantitative phase-field simulations reveal a complex pattern of interpenetrating a- and c-domain associated with the formation of 2D conducting layers at the intertwined regions and the emergence of 3D percolation channels of extraordinary high conductivity. Subnanometer resolution polarization mapping experimentally proves the existence of such extensive segments of charged tail-to-tail domain walls with unconventional structure at the ferroelastic-ferroelectric domain boundaries.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 7\",\"pages\":\"6993–7004 6993–7004\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c14727\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c14727\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c14727","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于可重构铁畴接口中可调谐传输的畴壁电子学为内存计算方法和可重编程神经形态电路提供了一个有前途的平台。虽然在许多材料中已经发现了导电畴壁,但由于高压操作、电阻状态的稳定性以及对畴壁动力学的有限控制,阻碍了该领域的进展。在这里,我们展示了基于精确可控的导电畴壁的Pb(Zr,Ti)O3薄膜在双端平行板电容器几何结构中的非易失性记忆功能。单个亚微米域可以通过位置敏感的低电压操作来选择性地处理具有纳安培范围传导读数的不同电阻状态。定量相场模拟揭示了a-和c-畴相互渗透的复杂模式,这与交织区域二维导电层的形成和超高导电性的三维渗透通道的出现有关。亚纳米分辨率极化映射实验证明了在铁弹性-铁电畴边界处存在这种具有非常规结构的宽段带电尾对尾畴壁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Position-Sensitive Domain-by-Domain Switchable Ferroelectric Memristor

Domain-wall electronics based on the tunable transport in reconfigurable ferroic domain interfaces offer a promising platform for in-memory computing approaches and reprogrammable neuromorphic circuits. While conductive domain walls have been discovered in many materials, progress in the field is hindered by high-voltage operations, stability of the resistive states and limited control over the domain wall dynamics. Here, we show nonvolatile memristive functionalities based on precisely controllable conductive domain walls in tetragonal Pb(Zr,Ti)O3 thin films within a two-terminal parallel-plate capacitor geometry. Individual submicron domains can be manipulated selectively by position-sensitive low-voltage operations to address distinct resistive states with nanoampere-range conduction readout. Quantitative phase-field simulations reveal a complex pattern of interpenetrating a- and c-domain associated with the formation of 2D conducting layers at the intertwined regions and the emergence of 3D percolation channels of extraordinary high conductivity. Subnanometer resolution polarization mapping experimentally proves the existence of such extensive segments of charged tail-to-tail domain walls with unconventional structure at the ferroelastic-ferroelectric domain boundaries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信