不同v型坡口深度WC-10Co/B318钢异种电阻焊缝接头性能及等级行为

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lingyu Chen , Chong Zhang , Hui Long
{"title":"不同v型坡口深度WC-10Co/B318钢异种电阻焊缝接头性能及等级行为","authors":"Lingyu Chen ,&nbsp;Chong Zhang ,&nbsp;Hui Long","doi":"10.1016/j.ijrmhm.2025.107111","DOIUrl":null,"url":null,"abstract":"<div><div>Resistance welding provides unique advantages over other joining processes in combining a small portion of cemented carbide with a large part of steel for the purpose of applying carbide band saw blades and achieving the effect of cost reduction, material savings, and increased efficiency. Based on previous studies, this research examines how V-groove depth affects the quality of resistance-welded WC-10Co and B318 steel joints in order to improve the service life of carbide band saw blades. The joints' shear force, welding process, macroscopic morphology, microstructure, fracture, microhardness, and toughness are explored to reveal joint performance and hierarchical behavior. The results show that the joint with a V3 groove has a higher and more stable shear force among the three investigated V-groove depths due to the smaller interfacial reaction layer and less WC-10Co loss. High-speed photographic results reflect differences in the location and amount of heat production in the three types of joints, corresponding to the microstructure and fracture morphology. A deeper groove depth results in high utilization of Ni, less welding slag encapsulating the WC-10Co, and reduced cracks. The joint's microstructure and fracture morphology exhibit ellipsoidal and fishbone-like structures, demonstrating a hierarchical behavior between the ellipsoidal and fishbone-like structures. This hierarchical behavior is mainly attributed to the interactions among Ni, W, Co, C, and molten Fe and elemental migration, with the formation mechanism explained by the structural evolution schematic, which has never been mentioned in other studies. Accordingly, the V3 groove provides the optimal groove depth as it delivers the best joint performance by combining. This study provides experimental data and theoretical references for the actual machining of carbide band saw blades.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"129 ","pages":"Article 107111"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint performance and hierarchical behavior of WC-10Co/B318 steel dissimilar resistance welds with different V-groove depths\",\"authors\":\"Lingyu Chen ,&nbsp;Chong Zhang ,&nbsp;Hui Long\",\"doi\":\"10.1016/j.ijrmhm.2025.107111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Resistance welding provides unique advantages over other joining processes in combining a small portion of cemented carbide with a large part of steel for the purpose of applying carbide band saw blades and achieving the effect of cost reduction, material savings, and increased efficiency. Based on previous studies, this research examines how V-groove depth affects the quality of resistance-welded WC-10Co and B318 steel joints in order to improve the service life of carbide band saw blades. The joints' shear force, welding process, macroscopic morphology, microstructure, fracture, microhardness, and toughness are explored to reveal joint performance and hierarchical behavior. The results show that the joint with a V3 groove has a higher and more stable shear force among the three investigated V-groove depths due to the smaller interfacial reaction layer and less WC-10Co loss. High-speed photographic results reflect differences in the location and amount of heat production in the three types of joints, corresponding to the microstructure and fracture morphology. A deeper groove depth results in high utilization of Ni, less welding slag encapsulating the WC-10Co, and reduced cracks. The joint's microstructure and fracture morphology exhibit ellipsoidal and fishbone-like structures, demonstrating a hierarchical behavior between the ellipsoidal and fishbone-like structures. This hierarchical behavior is mainly attributed to the interactions among Ni, W, Co, C, and molten Fe and elemental migration, with the formation mechanism explained by the structural evolution schematic, which has never been mentioned in other studies. Accordingly, the V3 groove provides the optimal groove depth as it delivers the best joint performance by combining. This study provides experimental data and theoretical references for the actual machining of carbide band saw blades.</div></div>\",\"PeriodicalId\":14216,\"journal\":{\"name\":\"International Journal of Refractory Metals & Hard Materials\",\"volume\":\"129 \",\"pages\":\"Article 107111\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refractory Metals & Hard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263436825000769\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000769","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电阻焊将一小部分硬质合金与大部分钢结合起来,以应用硬质合金带锯片,达到降低成本、节省材料和提高效率的效果,比其他连接工艺具有独特的优势。本研究在前人研究的基础上,研究了v型槽深度对WC-10Co和B318钢电阻焊接头质量的影响,以提高硬质合金带锯片的使用寿命。研究了接头的剪切力、焊接工艺、宏观形貌、显微组织、断口、显微硬度和韧性,揭示了接头的性能和分层行为。结果表明:在三种v型槽深度中,带有V3槽的接头由于界面反应层较小,WC-10Co损失较小,剪切力更高,且更稳定;高速摄影结果反映了三种类型接头中产热位置和产热量的差异,与显微组织和断口形貌相对应。坡口深度越深,镍的利用率越高,包覆WC-10Co的焊渣越少,裂纹越小。接头的显微组织和断口形貌表现为椭球状和鱼骨状结构,显示出椭球状和鱼骨状结构之间的分层行为。这种分层行为主要归因于Ni、W、Co、C和熔融Fe之间的相互作用和元素迁移,其形成机制由结构演化示意图解释,这在其他研究中从未提及。因此,V3槽提供了最佳的槽深度,因为它通过组合提供了最佳的关节性能。本研究为硬质合金带锯片的实际加工提供了实验数据和理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint performance and hierarchical behavior of WC-10Co/B318 steel dissimilar resistance welds with different V-groove depths
Resistance welding provides unique advantages over other joining processes in combining a small portion of cemented carbide with a large part of steel for the purpose of applying carbide band saw blades and achieving the effect of cost reduction, material savings, and increased efficiency. Based on previous studies, this research examines how V-groove depth affects the quality of resistance-welded WC-10Co and B318 steel joints in order to improve the service life of carbide band saw blades. The joints' shear force, welding process, macroscopic morphology, microstructure, fracture, microhardness, and toughness are explored to reveal joint performance and hierarchical behavior. The results show that the joint with a V3 groove has a higher and more stable shear force among the three investigated V-groove depths due to the smaller interfacial reaction layer and less WC-10Co loss. High-speed photographic results reflect differences in the location and amount of heat production in the three types of joints, corresponding to the microstructure and fracture morphology. A deeper groove depth results in high utilization of Ni, less welding slag encapsulating the WC-10Co, and reduced cracks. The joint's microstructure and fracture morphology exhibit ellipsoidal and fishbone-like structures, demonstrating a hierarchical behavior between the ellipsoidal and fishbone-like structures. This hierarchical behavior is mainly attributed to the interactions among Ni, W, Co, C, and molten Fe and elemental migration, with the formation mechanism explained by the structural evolution schematic, which has never been mentioned in other studies. Accordingly, the V3 groove provides the optimal groove depth as it delivers the best joint performance by combining. This study provides experimental data and theoretical references for the actual machining of carbide band saw blades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信