基于单细胞RNA-seq分析的CCN2在膝关节纤维化中介导成纤维细胞与巨噬细胞的相互作用

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Ziyun Li, Jia Jiang, Kangwen Cai, Yi Qiao, Xuancheng Zhang, Liren Wang, Yuhao Kang, Xiulin Wu, Benpeng Zhao, Xiuli Wang, Tianyi Zhang, Zhiqi Lin, Jinlong Wu, Simin Lu, Haihan Gao, Haocheng Jin, Caiqi Xu, Xiaoqiao Huangfu, Zhengzhi James, Qiuhua Chen, Xiaoqi Zheng, Ning-Ning Liu, Jinzhong Zhao
{"title":"基于单细胞RNA-seq分析的CCN2在膝关节纤维化中介导成纤维细胞与巨噬细胞的相互作用","authors":"Ziyun Li, Jia Jiang, Kangwen Cai, Yi Qiao, Xuancheng Zhang, Liren Wang, Yuhao Kang, Xiulin Wu, Benpeng Zhao, Xiuli Wang, Tianyi Zhang, Zhiqi Lin, Jinlong Wu, Simin Lu, Haihan Gao, Haocheng Jin, Caiqi Xu, Xiaoqiao Huangfu, Zhengzhi James, Qiuhua Chen, Xiaoqi Zheng, Ning-Ning Liu, Jinzhong Zhao","doi":"10.1038/s41413-025-00400-9","DOIUrl":null,"url":null,"abstract":"<p>Knee arthrofibrosis, characterized by excessive matrix protein production and deposition, substantially impairs basic daily functions, causing considerable distress and financial burden. However, the underlying pathomechanisms remain unclear. Here, we characterized the heterogeneous cell populations and cellular pathways by combination of flow cytometry and single-cell RNA-seq analysis of synovial tissues from six patients with or without knee arthrofibrosis. Increased macrophages and fibroblasts were observed with decreased numbers of fibroblast-like synoviocytes, endothelial cells, vascular smooth muscle cells, and T cells in the arthrofibrosis group compared with negative controls. Notably, fibroblasts were discovered to interact with macrophages, and lead to fibrosis through TGF-β pathway induced <i>CCN2</i> expression in fibroblasts. CCN2 was demonstrated to be required for fibroblast pro-fibrotic functions (activation, proliferation, and migration) through TGFBR/SMAD pathway. The expression of CCN2 was positively correlated with the collagen volume and TGF-β expression and negatively associated with patient-reported outcome measures in another cohort of patients with knee arthrofibrosis. Our study reveals the role of CCN2 in the fibroblast-macrophage interaction through TGF-β pathway which might help to shed light on CCN2 as a potential biomarker.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"66 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CCN2 mediates fibroblast-macrophage interaction in knee arthrofibrosis based on single-cell RNA-seq analysis\",\"authors\":\"Ziyun Li, Jia Jiang, Kangwen Cai, Yi Qiao, Xuancheng Zhang, Liren Wang, Yuhao Kang, Xiulin Wu, Benpeng Zhao, Xiuli Wang, Tianyi Zhang, Zhiqi Lin, Jinlong Wu, Simin Lu, Haihan Gao, Haocheng Jin, Caiqi Xu, Xiaoqiao Huangfu, Zhengzhi James, Qiuhua Chen, Xiaoqi Zheng, Ning-Ning Liu, Jinzhong Zhao\",\"doi\":\"10.1038/s41413-025-00400-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Knee arthrofibrosis, characterized by excessive matrix protein production and deposition, substantially impairs basic daily functions, causing considerable distress and financial burden. However, the underlying pathomechanisms remain unclear. Here, we characterized the heterogeneous cell populations and cellular pathways by combination of flow cytometry and single-cell RNA-seq analysis of synovial tissues from six patients with or without knee arthrofibrosis. Increased macrophages and fibroblasts were observed with decreased numbers of fibroblast-like synoviocytes, endothelial cells, vascular smooth muscle cells, and T cells in the arthrofibrosis group compared with negative controls. Notably, fibroblasts were discovered to interact with macrophages, and lead to fibrosis through TGF-β pathway induced <i>CCN2</i> expression in fibroblasts. CCN2 was demonstrated to be required for fibroblast pro-fibrotic functions (activation, proliferation, and migration) through TGFBR/SMAD pathway. The expression of CCN2 was positively correlated with the collagen volume and TGF-β expression and negatively associated with patient-reported outcome measures in another cohort of patients with knee arthrofibrosis. Our study reveals the role of CCN2 in the fibroblast-macrophage interaction through TGF-β pathway which might help to shed light on CCN2 as a potential biomarker.</p>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-025-00400-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-025-00400-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

膝关节纤维化以基质蛋白过量生成和沉积为特征,严重损害基本日常功能,造成相当大的痛苦和经济负担。然而,潜在的病理机制尚不清楚。在这里,我们结合流式细胞术和单细胞RNA-seq分析了6例患有或不患有膝关节纤维化的滑膜组织的异质性细胞群和细胞通路。与阴性对照组相比,关节纤维化组巨噬细胞和成纤维细胞增加,成纤维细胞样滑膜细胞、内皮细胞、血管平滑肌细胞和T细胞数量减少。值得注意的是,成纤维细胞被发现与巨噬细胞相互作用,并通过TGF-β途径诱导成纤维细胞中CCN2的表达而导致纤维化。CCN2被证明是通过TGFBR/SMAD途径实现成纤维细胞促纤维化功能(激活、增殖和迁移)所必需的。在另一组膝关节纤维化患者中,CCN2的表达与胶原体积和TGF-β表达呈正相关,与患者报告的预后指标呈负相关。我们的研究揭示了CCN2通过TGF-β途径在成纤维细胞-巨噬细胞相互作用中的作用,这可能有助于阐明CCN2作为一种潜在的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CCN2 mediates fibroblast-macrophage interaction in knee arthrofibrosis based on single-cell RNA-seq analysis

CCN2 mediates fibroblast-macrophage interaction in knee arthrofibrosis based on single-cell RNA-seq analysis

Knee arthrofibrosis, characterized by excessive matrix protein production and deposition, substantially impairs basic daily functions, causing considerable distress and financial burden. However, the underlying pathomechanisms remain unclear. Here, we characterized the heterogeneous cell populations and cellular pathways by combination of flow cytometry and single-cell RNA-seq analysis of synovial tissues from six patients with or without knee arthrofibrosis. Increased macrophages and fibroblasts were observed with decreased numbers of fibroblast-like synoviocytes, endothelial cells, vascular smooth muscle cells, and T cells in the arthrofibrosis group compared with negative controls. Notably, fibroblasts were discovered to interact with macrophages, and lead to fibrosis through TGF-β pathway induced CCN2 expression in fibroblasts. CCN2 was demonstrated to be required for fibroblast pro-fibrotic functions (activation, proliferation, and migration) through TGFBR/SMAD pathway. The expression of CCN2 was positively correlated with the collagen volume and TGF-β expression and negatively associated with patient-reported outcome measures in another cohort of patients with knee arthrofibrosis. Our study reveals the role of CCN2 in the fibroblast-macrophage interaction through TGF-β pathway which might help to shed light on CCN2 as a potential biomarker.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信