利用以甲烷氧化菌为基础的益生菌减少韩宇牛肠道甲烷排放。

IF 4.9 Q1 MICROBIOLOGY
Tenzin Tseten, Rey Anthony Sanjorjo, Jong-Wook Son, Keun Sik Baik, Janine I Berdos, Seon-Ho Kim, Sang-Hwal Yoon, Min-Kyoung Kang, Moonhyuk Kwon, Sang-Suk Lee, Seon-Won Kim
{"title":"利用以甲烷氧化菌为基础的益生菌减少韩宇牛肠道甲烷排放。","authors":"Tenzin Tseten, Rey Anthony Sanjorjo, Jong-Wook Son, Keun Sik Baik, Janine I Berdos, Seon-Ho Kim, Sang-Hwal Yoon, Min-Kyoung Kang, Moonhyuk Kwon, Sang-Suk Lee, Seon-Won Kim","doi":"10.1186/s42523-025-00385-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Methane emission from enteric rumen fermentation is a main source of greenhouse gas (GHG) emission and a major concern for global warming.</p><p><strong>Results: </strong>In this study, we isolated methanotroph-methylotroph consortium NC52PC from the rumen after a series of sub-culture and repetitive streaking on an agar plate and polycarbonate membrane filter. The NC52PC comprises methanotroph species (Methylocystis sp.) and methylotroph species (Methylobacterium sp.), forming a consortium capable of growing solely on methane as a carbon source. Their morphology, growth, and genome sequence were characterized. We assessed its effectiveness in mitigating methane emissions through both in vitro and in vivo experiments. During the in vitro trial, the introduction of NC52PC (at a concentration of 5.1 × 10<sup>7</sup> CFUs/ml) demonstrated a reduction in methane production exceeding 40% and 50% after 12 and 24 h, respectively. Also, NC52PC did not significantly alter other aspects of the in vitro rumen fermentation parameters such as pH, total gas production, and digestibility. Further investigation involved testing NC52PC as a dietary supplement in 12 young Hanwoo steers over three 30-day test periods. The steers received a diet comprising 70.8% concentrate and 29.2% bluegrass on a dry matter basis, with variations including 3 × 10<sup>7</sup> CFUs/ml of NC52PC (LOW) and 3 × 10<sup>8</sup> CFUs/ml (HIGH) of NC52PC, and without NC52PC as a control (CON). Steers administered with HIGH and LOW concentrations of NC52PC exhibited reduced enteric methane emission (g/day) by 14.4% and 12.0%, respectively.</p><p><strong>Conclusion: </strong>Feeding methanotroph-methylotroph consortium NC52PC significantly reduced methane emissions in Korean beef cattle without any adverse effects on animal health. These findings suggest that this probiotic could serve as a promising feed additive to effectively mitigate methane emissions from ruminants. However, further research is needed to evaluate the long-term effects of NC52PC on animal health, and on meat and milk quality.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"19"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846464/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reduction of enteric methane emission using methanotroph-based probiotics in Hanwoo steers.\",\"authors\":\"Tenzin Tseten, Rey Anthony Sanjorjo, Jong-Wook Son, Keun Sik Baik, Janine I Berdos, Seon-Ho Kim, Sang-Hwal Yoon, Min-Kyoung Kang, Moonhyuk Kwon, Sang-Suk Lee, Seon-Won Kim\",\"doi\":\"10.1186/s42523-025-00385-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Methane emission from enteric rumen fermentation is a main source of greenhouse gas (GHG) emission and a major concern for global warming.</p><p><strong>Results: </strong>In this study, we isolated methanotroph-methylotroph consortium NC52PC from the rumen after a series of sub-culture and repetitive streaking on an agar plate and polycarbonate membrane filter. The NC52PC comprises methanotroph species (Methylocystis sp.) and methylotroph species (Methylobacterium sp.), forming a consortium capable of growing solely on methane as a carbon source. Their morphology, growth, and genome sequence were characterized. We assessed its effectiveness in mitigating methane emissions through both in vitro and in vivo experiments. During the in vitro trial, the introduction of NC52PC (at a concentration of 5.1 × 10<sup>7</sup> CFUs/ml) demonstrated a reduction in methane production exceeding 40% and 50% after 12 and 24 h, respectively. Also, NC52PC did not significantly alter other aspects of the in vitro rumen fermentation parameters such as pH, total gas production, and digestibility. Further investigation involved testing NC52PC as a dietary supplement in 12 young Hanwoo steers over three 30-day test periods. The steers received a diet comprising 70.8% concentrate and 29.2% bluegrass on a dry matter basis, with variations including 3 × 10<sup>7</sup> CFUs/ml of NC52PC (LOW) and 3 × 10<sup>8</sup> CFUs/ml (HIGH) of NC52PC, and without NC52PC as a control (CON). Steers administered with HIGH and LOW concentrations of NC52PC exhibited reduced enteric methane emission (g/day) by 14.4% and 12.0%, respectively.</p><p><strong>Conclusion: </strong>Feeding methanotroph-methylotroph consortium NC52PC significantly reduced methane emissions in Korean beef cattle without any adverse effects on animal health. These findings suggest that this probiotic could serve as a promising feed additive to effectively mitigate methane emissions from ruminants. However, further research is needed to evaluate the long-term effects of NC52PC on animal health, and on meat and milk quality.</p>\",\"PeriodicalId\":72201,\"journal\":{\"name\":\"Animal microbiome\",\"volume\":\"7 1\",\"pages\":\"19\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846464/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal microbiome\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42523-025-00385-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-025-00385-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:肠道瘤胃发酵产生的甲烷是温室气体(GHG)排放的主要来源,也是全球变暖的主要问题之一。结果:在本研究中,我们从瘤胃中分离出了甲烷营养-甲基营养联合体NC52PC,经过一系列的传代培养,在琼脂平板和聚碳酸酯膜过滤器上反复划线。NC52PC由甲烷营养菌种(Methylocystis sp.)和甲基营养菌种(Methylobacterium sp.)组成,形成一个能够仅以甲烷为碳源生长的联合体。对它们的形态、生长和基因组序列进行了表征。我们通过体外和体内实验评估了其在减少甲烷排放方面的有效性。在体外试验中,引入NC52PC(浓度为5.1 × 107 cfu /ml),在12 h和24 h后,甲烷产量分别减少了40%和50%。此外,NC52PC对体外瘤胃发酵的其他参数如pH、总产气量和消化率没有显著影响。进一步的研究包括在3个30天的试验期内,在12只年轻的韩牛身上测试NC52PC作为膳食补充剂。饲粮以干物质为基础,添加70.8%精料和29.2%蓝草,NC52PC (LOW)和NC52PC (HIGH)分别为3 × 107 CFUs/ml和3 × 108 CFUs/ml,对照组不添加NC52PC (CON)。饲喂高浓度和低浓度NC52PC的小鼠肠道甲烷排放量(g/天)分别减少14.4%和12.0%。结论:饲喂甲烷营养型-甲基营养型联合体NC52PC可显著减少韩国肉牛的甲烷排放,且对动物健康无不良影响。这些发现表明,这种益生菌可以作为一种有前途的饲料添加剂,有效地减少反刍动物的甲烷排放。然而,还需要进一步的研究来评估NC52PC对动物健康以及肉质和奶质的长期影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of enteric methane emission using methanotroph-based probiotics in Hanwoo steers.

Background: Methane emission from enteric rumen fermentation is a main source of greenhouse gas (GHG) emission and a major concern for global warming.

Results: In this study, we isolated methanotroph-methylotroph consortium NC52PC from the rumen after a series of sub-culture and repetitive streaking on an agar plate and polycarbonate membrane filter. The NC52PC comprises methanotroph species (Methylocystis sp.) and methylotroph species (Methylobacterium sp.), forming a consortium capable of growing solely on methane as a carbon source. Their morphology, growth, and genome sequence were characterized. We assessed its effectiveness in mitigating methane emissions through both in vitro and in vivo experiments. During the in vitro trial, the introduction of NC52PC (at a concentration of 5.1 × 107 CFUs/ml) demonstrated a reduction in methane production exceeding 40% and 50% after 12 and 24 h, respectively. Also, NC52PC did not significantly alter other aspects of the in vitro rumen fermentation parameters such as pH, total gas production, and digestibility. Further investigation involved testing NC52PC as a dietary supplement in 12 young Hanwoo steers over three 30-day test periods. The steers received a diet comprising 70.8% concentrate and 29.2% bluegrass on a dry matter basis, with variations including 3 × 107 CFUs/ml of NC52PC (LOW) and 3 × 108 CFUs/ml (HIGH) of NC52PC, and without NC52PC as a control (CON). Steers administered with HIGH and LOW concentrations of NC52PC exhibited reduced enteric methane emission (g/day) by 14.4% and 12.0%, respectively.

Conclusion: Feeding methanotroph-methylotroph consortium NC52PC significantly reduced methane emissions in Korean beef cattle without any adverse effects on animal health. These findings suggest that this probiotic could serve as a promising feed additive to effectively mitigate methane emissions from ruminants. However, further research is needed to evaluate the long-term effects of NC52PC on animal health, and on meat and milk quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信