{"title":"大规模特定主体大脑网络中非线性癫痫发作扩散动态的可控性。","authors":"S Amin Moosavi, Jordan S Feldman, Wilson Truccolo","doi":"10.1038/s41598-025-90632-w","DOIUrl":null,"url":null,"abstract":"<p><p>Closed-loop electrical stimulation has become an important alternative to resective surgery for control of pharmacologically-resistant focal epileptic seizures. Seizure spread across large-scale brain networks, rather than its focal onset, is what commonly leads to major disruptions in sensorimotor and cognitive processing, as well as loss-of-consciousness, one of the main impairing aspects of the disorder. Electrical stimulation, triggered by early detection of seizure onset in epileptogenic zones (EZs), has been applied to prevent spread and its subsequent effects. Here, we show how linear feedback seizure-spread controllability in subject-specific (white-matter tractography) Epileptor network models is affected by variations in brain excitability, network coupling strength, control latency and gain, and actuation targets. Feedback control can qualitatively change the nonlinear seizure dynamics, and the paths to seizure termination and spread prevention. Notably, control onset latency is a critical parameter leading to a phase transition in spread controllability. Consequently, the efficacy of EZ-only actuation is limited depending on network excitability, coupling strength, and practical latencies for detection and actuation. Additional feedback-stabilization control of theoretically-derived optimal node subsets in the network are necessary for spread prevention. Finally, we contrast our linear-feedback controllability assessment with other measures based on minimum-energy (Gramian) controllability and nonlinear pulse-perturbation approaches.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"6467"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846898/pdf/","citationCount":"0","resultStr":"{\"title\":\"Controllability of nonlinear epileptic-seizure spreading dynamics in large-scale subject-specific brain networks.\",\"authors\":\"S Amin Moosavi, Jordan S Feldman, Wilson Truccolo\",\"doi\":\"10.1038/s41598-025-90632-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Closed-loop electrical stimulation has become an important alternative to resective surgery for control of pharmacologically-resistant focal epileptic seizures. Seizure spread across large-scale brain networks, rather than its focal onset, is what commonly leads to major disruptions in sensorimotor and cognitive processing, as well as loss-of-consciousness, one of the main impairing aspects of the disorder. Electrical stimulation, triggered by early detection of seizure onset in epileptogenic zones (EZs), has been applied to prevent spread and its subsequent effects. Here, we show how linear feedback seizure-spread controllability in subject-specific (white-matter tractography) Epileptor network models is affected by variations in brain excitability, network coupling strength, control latency and gain, and actuation targets. Feedback control can qualitatively change the nonlinear seizure dynamics, and the paths to seizure termination and spread prevention. Notably, control onset latency is a critical parameter leading to a phase transition in spread controllability. Consequently, the efficacy of EZ-only actuation is limited depending on network excitability, coupling strength, and practical latencies for detection and actuation. Additional feedback-stabilization control of theoretically-derived optimal node subsets in the network are necessary for spread prevention. Finally, we contrast our linear-feedback controllability assessment with other measures based on minimum-energy (Gramian) controllability and nonlinear pulse-perturbation approaches.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"6467\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846898/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-90632-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-90632-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Controllability of nonlinear epileptic-seizure spreading dynamics in large-scale subject-specific brain networks.
Closed-loop electrical stimulation has become an important alternative to resective surgery for control of pharmacologically-resistant focal epileptic seizures. Seizure spread across large-scale brain networks, rather than its focal onset, is what commonly leads to major disruptions in sensorimotor and cognitive processing, as well as loss-of-consciousness, one of the main impairing aspects of the disorder. Electrical stimulation, triggered by early detection of seizure onset in epileptogenic zones (EZs), has been applied to prevent spread and its subsequent effects. Here, we show how linear feedback seizure-spread controllability in subject-specific (white-matter tractography) Epileptor network models is affected by variations in brain excitability, network coupling strength, control latency and gain, and actuation targets. Feedback control can qualitatively change the nonlinear seizure dynamics, and the paths to seizure termination and spread prevention. Notably, control onset latency is a critical parameter leading to a phase transition in spread controllability. Consequently, the efficacy of EZ-only actuation is limited depending on network excitability, coupling strength, and practical latencies for detection and actuation. Additional feedback-stabilization control of theoretically-derived optimal node subsets in the network are necessary for spread prevention. Finally, we contrast our linear-feedback controllability assessment with other measures based on minimum-energy (Gramian) controllability and nonlinear pulse-perturbation approaches.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.