多种结构不同的战争砷引起皮肤化学发泡剂损伤的共同分子谱。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ritesh Kumar Srivastava, Suhail Muzaffar, Jasim Khan, Mohit Bansal, Anupam Agarwal, Mohammad Athar
{"title":"多种结构不同的战争砷引起皮肤化学发泡剂损伤的共同分子谱。","authors":"Ritesh Kumar Srivastava, Suhail Muzaffar, Jasim Khan, Mohit Bansal, Anupam Agarwal, Mohammad Athar","doi":"10.1038/s41598-024-83513-1","DOIUrl":null,"url":null,"abstract":"<p><p>Skin exposure to arsenicals such as lewisite and phenylarsine oxide leads to severe cutaneous damage. Here, we characterized the molecular pathogenesis of skin injury caused by additionally structurally distinct warfare arsenicals including diphenylchlorarsine (DPCA), diphenylcyanoarsine (DPCYA), diethylchloroarsine (DECA). Cutaneous exposure to DPCA/DPCYA showed marked increase in skin erythema and edema at 6 and 24 h followed by scar formation at 72 h, while DECA did not produce such visual injuries in mouse skin. Clinical observations showed significant increase in Draize score and skin bi-fold thickness in a time-dependent manner. DPCA or DPCYA-exposed skin histology revealed highly inflamed hypodermal areas with infiltrated immune cells at 6 and 24 h, however, epidermal cell necrosis was seen at 72 h. Significantly high number of macrophage infiltration observed at 6 h, whereas peak neutrophil infiltration occurred at 72 h. Number of micro-blisters also increased. However, these effects were nonsignificant following topical DECA exposure. RT-PCR confirmed augmented inflammatory responses in the skin challenged with both DPCA/DPCYA, which accompanied increased ROS and unfolded protein response (UPR) signaling. DECA also increased ROS with changes in UPR. Disrupted tight (Yap/ZO-1) and adherens (Yap/α-Catenin) junction proteins underlie time-dependent apoptotic cell death of epidermal keratinocytes. Thus, these studies identify arsenicals-manifested signaling pathways similar to those of lewisite.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"6505"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846883/pdf/","citationCount":"0","resultStr":"{\"title\":\"Common molecular profile of multiple structurally distinct warfare arsenicals in causing cutaneous chemical vesicant injury.\",\"authors\":\"Ritesh Kumar Srivastava, Suhail Muzaffar, Jasim Khan, Mohit Bansal, Anupam Agarwal, Mohammad Athar\",\"doi\":\"10.1038/s41598-024-83513-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin exposure to arsenicals such as lewisite and phenylarsine oxide leads to severe cutaneous damage. Here, we characterized the molecular pathogenesis of skin injury caused by additionally structurally distinct warfare arsenicals including diphenylchlorarsine (DPCA), diphenylcyanoarsine (DPCYA), diethylchloroarsine (DECA). Cutaneous exposure to DPCA/DPCYA showed marked increase in skin erythema and edema at 6 and 24 h followed by scar formation at 72 h, while DECA did not produce such visual injuries in mouse skin. Clinical observations showed significant increase in Draize score and skin bi-fold thickness in a time-dependent manner. DPCA or DPCYA-exposed skin histology revealed highly inflamed hypodermal areas with infiltrated immune cells at 6 and 24 h, however, epidermal cell necrosis was seen at 72 h. Significantly high number of macrophage infiltration observed at 6 h, whereas peak neutrophil infiltration occurred at 72 h. Number of micro-blisters also increased. However, these effects were nonsignificant following topical DECA exposure. RT-PCR confirmed augmented inflammatory responses in the skin challenged with both DPCA/DPCYA, which accompanied increased ROS and unfolded protein response (UPR) signaling. DECA also increased ROS with changes in UPR. Disrupted tight (Yap/ZO-1) and adherens (Yap/α-Catenin) junction proteins underlie time-dependent apoptotic cell death of epidermal keratinocytes. Thus, these studies identify arsenicals-manifested signaling pathways similar to those of lewisite.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"6505\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846883/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-83513-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-83513-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

皮肤接触到路易斯酸和氧化苯larsine等砷会导致严重的皮肤损伤。在这里,我们描述了另外结构不同的战争砷包括二苯基氯胂(DPCA),二苯基氰胂(DPCYA),二乙基氯胂(DECA)引起的皮肤损伤的分子发病机制。皮肤暴露于DPCA/DPCYA在6和24 h时皮肤红斑和水肿明显增加,72 h时瘢痕形成,而DECA在小鼠皮肤中没有产生这种视觉损伤。临床观察显示,Draize评分和皮肤双层厚度随时间的增加而显著增加。DPCA或dpcya暴露的皮肤组织学显示,在6和24小时,皮下区域高度炎症,免疫细胞浸润,但在72小时,表皮细胞坏死。在6小时,巨噬细胞浸润数量明显增加,而中性粒细胞浸润高峰出现在72小时。微水泡数量也增加。然而,局部暴露于DECA后,这些影响不显著。RT-PCR证实,皮肤在受到DPCA/DPCYA刺激后,炎症反应增强,并伴有ROS和未折叠蛋白反应(UPR)信号的增加。随着UPR的变化,DECA也增加了ROS。破裂的紧密(Yap/ZO-1)和粘附(Yap/α-Catenin)连接蛋白是表皮角质形成细胞时间依赖性凋亡的基础。因此,这些研究确定了砷表现的信号通路类似于刘易斯体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common molecular profile of multiple structurally distinct warfare arsenicals in causing cutaneous chemical vesicant injury.

Skin exposure to arsenicals such as lewisite and phenylarsine oxide leads to severe cutaneous damage. Here, we characterized the molecular pathogenesis of skin injury caused by additionally structurally distinct warfare arsenicals including diphenylchlorarsine (DPCA), diphenylcyanoarsine (DPCYA), diethylchloroarsine (DECA). Cutaneous exposure to DPCA/DPCYA showed marked increase in skin erythema and edema at 6 and 24 h followed by scar formation at 72 h, while DECA did not produce such visual injuries in mouse skin. Clinical observations showed significant increase in Draize score and skin bi-fold thickness in a time-dependent manner. DPCA or DPCYA-exposed skin histology revealed highly inflamed hypodermal areas with infiltrated immune cells at 6 and 24 h, however, epidermal cell necrosis was seen at 72 h. Significantly high number of macrophage infiltration observed at 6 h, whereas peak neutrophil infiltration occurred at 72 h. Number of micro-blisters also increased. However, these effects were nonsignificant following topical DECA exposure. RT-PCR confirmed augmented inflammatory responses in the skin challenged with both DPCA/DPCYA, which accompanied increased ROS and unfolded protein response (UPR) signaling. DECA also increased ROS with changes in UPR. Disrupted tight (Yap/ZO-1) and adherens (Yap/α-Catenin) junction proteins underlie time-dependent apoptotic cell death of epidermal keratinocytes. Thus, these studies identify arsenicals-manifested signaling pathways similar to those of lewisite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信