{"title":"劫持酶学实时检测热循环仪:荧光体检测解旋酶活性的改进。","authors":"Jean-Philippe Robin, Vincent Mocquet","doi":"10.1016/j.biochi.2025.02.002","DOIUrl":null,"url":null,"abstract":"<p><p>Helicases are enzymes involved in all aspects of nucleic acid synthesis, regulation and degradation. As a consequence, several methods were developed to monitor their enzymatic activity. In this report, we described an improvement of bulk fluorescent helicase assays to overcome their specific limitations (cost, health and safety regulations, etc.). Using a real time detection thermocycler to monitor the fluorescence in real-time, we managed to precisely control the initiation of the helicase reaction through temperature tuning. Therefore, we were able to demonstrate that this setup could provide a qualitative and a quantitative evaluation of the helicase domain of the UPF1 helicase (UPF1-HD) and that several fluorophores could be used in parallel during the same run.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hijacking a real time detection thermocycler for enzymology: Improvement of a fluorescent bulk assay monitoring helicase activity.\",\"authors\":\"Jean-Philippe Robin, Vincent Mocquet\",\"doi\":\"10.1016/j.biochi.2025.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Helicases are enzymes involved in all aspects of nucleic acid synthesis, regulation and degradation. As a consequence, several methods were developed to monitor their enzymatic activity. In this report, we described an improvement of bulk fluorescent helicase assays to overcome their specific limitations (cost, health and safety regulations, etc.). Using a real time detection thermocycler to monitor the fluorescence in real-time, we managed to precisely control the initiation of the helicase reaction through temperature tuning. Therefore, we were able to demonstrate that this setup could provide a qualitative and a quantitative evaluation of the helicase domain of the UPF1 helicase (UPF1-HD) and that several fluorophores could be used in parallel during the same run.</p>\",\"PeriodicalId\":93898,\"journal\":{\"name\":\"Biochimie\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.biochi.2025.02.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biochi.2025.02.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hijacking a real time detection thermocycler for enzymology: Improvement of a fluorescent bulk assay monitoring helicase activity.
Helicases are enzymes involved in all aspects of nucleic acid synthesis, regulation and degradation. As a consequence, several methods were developed to monitor their enzymatic activity. In this report, we described an improvement of bulk fluorescent helicase assays to overcome their specific limitations (cost, health and safety regulations, etc.). Using a real time detection thermocycler to monitor the fluorescence in real-time, we managed to precisely control the initiation of the helicase reaction through temperature tuning. Therefore, we were able to demonstrate that this setup could provide a qualitative and a quantitative evaluation of the helicase domain of the UPF1 helicase (UPF1-HD) and that several fluorophores could be used in parallel during the same run.