通过有序位置的神经编码进行序列分块。

IF 16.7 1区 心理学 Q1 BEHAVIORAL SCIENCES
Nai Ding
{"title":"通过有序位置的神经编码进行序列分块。","authors":"Nai Ding","doi":"10.1016/j.tics.2025.01.014","DOIUrl":null,"url":null,"abstract":"<p><p>Grouping sensory events into chunks is an efficient strategy to integrate information across long sequences such as speech, music, and complex movements. Although chunks can be constructed based on diverse cues (e.g., sensory features, statistical patterns, internal knowledge) recent studies have consistently demonstrated that the chunks constructed by different cues are all tracked by low-frequency neural dynamics. Here, I review evidence that chunking cues drive low-frequency activity in modality-dependent networks, which interact to generate chunk-tracking activity in broad brain areas. Functionally, this work suggests that a core computation underlying sequence chunking may assign each event its ordinal position within a chunk and that this computation is causally implemented by chunk-tracking neural activity during predictive sequence chunking.</p>","PeriodicalId":49417,"journal":{"name":"Trends in Cognitive Sciences","volume":" ","pages":""},"PeriodicalIF":16.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequence chunking through neural encoding of ordinal positions.\",\"authors\":\"Nai Ding\",\"doi\":\"10.1016/j.tics.2025.01.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Grouping sensory events into chunks is an efficient strategy to integrate information across long sequences such as speech, music, and complex movements. Although chunks can be constructed based on diverse cues (e.g., sensory features, statistical patterns, internal knowledge) recent studies have consistently demonstrated that the chunks constructed by different cues are all tracked by low-frequency neural dynamics. Here, I review evidence that chunking cues drive low-frequency activity in modality-dependent networks, which interact to generate chunk-tracking activity in broad brain areas. Functionally, this work suggests that a core computation underlying sequence chunking may assign each event its ordinal position within a chunk and that this computation is causally implemented by chunk-tracking neural activity during predictive sequence chunking.</p>\",\"PeriodicalId\":49417,\"journal\":{\"name\":\"Trends in Cognitive Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Cognitive Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tics.2025.01.014\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cognitive Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.tics.2025.01.014","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将感官事件分组成块是一种有效的策略,可以将语音、音乐和复杂动作等长序列信息整合在一起。尽管可以根据不同的线索(如感官特征、统计模式、内部知识)构建块,但最近的研究一致表明,由不同线索构建的块都被低频神经动力学跟踪。在这里,我回顾了分块线索在模式依赖网络中驱动低频活动的证据,这些网络相互作用,在广泛的大脑区域产生分块跟踪活动。从功能上讲,这项工作表明,序列分块的核心计算可以为每个事件分配其在块中的顺序位置,并且该计算在预测序列分块期间通过块跟踪神经活动因果地实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequence chunking through neural encoding of ordinal positions.

Grouping sensory events into chunks is an efficient strategy to integrate information across long sequences such as speech, music, and complex movements. Although chunks can be constructed based on diverse cues (e.g., sensory features, statistical patterns, internal knowledge) recent studies have consistently demonstrated that the chunks constructed by different cues are all tracked by low-frequency neural dynamics. Here, I review evidence that chunking cues drive low-frequency activity in modality-dependent networks, which interact to generate chunk-tracking activity in broad brain areas. Functionally, this work suggests that a core computation underlying sequence chunking may assign each event its ordinal position within a chunk and that this computation is causally implemented by chunk-tracking neural activity during predictive sequence chunking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Cognitive Sciences
Trends in Cognitive Sciences 医学-行为科学
CiteScore
27.90
自引率
1.50%
发文量
156
审稿时长
6-12 weeks
期刊介绍: Essential reading for those working directly in the cognitive sciences or in related specialist areas, Trends in Cognitive Sciences provides an instant overview of current thinking for scientists, students and teachers who want to keep up with the latest developments in the cognitive sciences. The journal brings together research in psychology, artificial intelligence, linguistics, philosophy, computer science and neuroscience. Trends in Cognitive Sciences provides a platform for the interaction of these disciplines and the evolution of cognitive science as an independent field of study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信