{"title":"快速、智能和自适应:使用机器学习优化心理健康评估并监测随时间的变化。","authors":"Daiana Colledani, Claudio Barbaranelli, Pasquale Anselmi","doi":"10.1038/s41598-025-91086-w","DOIUrl":null,"url":null,"abstract":"<p><p>In mental health, accurate symptom assessment and precise measurement of patient conditions are crucial for clinical decision-making and effective treatment planning. Traditional assessment methods can be burdensome, especially for vulnerable populations, leading to decreased motivation and potentially unreliable results. Computerized Adaptive Testing (CAT) has emerged as a solution, offering efficient and personalized assessments. In particular, Machine Learning-based CAT (MT-based CATs) enables adaptive, rapid, and accurate evaluations that are more easily implementable than traditional methods. This approach bypasses typical item selection processes and the associated computational costs while avoiding the rigid assumptions of traditional CAT approaches. This study investigates the effectiveness of Machine Learning-Model Tree-based CAT (ML-MT-based CAT) in detecting changes in mental health measures collected at four time points (6-month intervals between February 2018 and December 2019). Three CATs measuring generalized anxiety, depression, and social anxiety were developed and tested on a dataset with responses from 564 participants. A cross-validation approach based on real data simulations was used. Results showed that ML-MT-based CATs produced estimates of trait levels comparable to full-length tests while reducing the number of items administered by 50% or more. In addition, ML-MT-based CATs captured changes in trait levels consistent with full-length tests, outperforming short static measures.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"6492"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847009/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast, smart, and adaptive: using machine learning to optimize mental health assessment and monitor change over time.\",\"authors\":\"Daiana Colledani, Claudio Barbaranelli, Pasquale Anselmi\",\"doi\":\"10.1038/s41598-025-91086-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In mental health, accurate symptom assessment and precise measurement of patient conditions are crucial for clinical decision-making and effective treatment planning. Traditional assessment methods can be burdensome, especially for vulnerable populations, leading to decreased motivation and potentially unreliable results. Computerized Adaptive Testing (CAT) has emerged as a solution, offering efficient and personalized assessments. In particular, Machine Learning-based CAT (MT-based CATs) enables adaptive, rapid, and accurate evaluations that are more easily implementable than traditional methods. This approach bypasses typical item selection processes and the associated computational costs while avoiding the rigid assumptions of traditional CAT approaches. This study investigates the effectiveness of Machine Learning-Model Tree-based CAT (ML-MT-based CAT) in detecting changes in mental health measures collected at four time points (6-month intervals between February 2018 and December 2019). Three CATs measuring generalized anxiety, depression, and social anxiety were developed and tested on a dataset with responses from 564 participants. A cross-validation approach based on real data simulations was used. Results showed that ML-MT-based CATs produced estimates of trait levels comparable to full-length tests while reducing the number of items administered by 50% or more. In addition, ML-MT-based CATs captured changes in trait levels consistent with full-length tests, outperforming short static measures.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"6492\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847009/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-91086-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91086-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Fast, smart, and adaptive: using machine learning to optimize mental health assessment and monitor change over time.
In mental health, accurate symptom assessment and precise measurement of patient conditions are crucial for clinical decision-making and effective treatment planning. Traditional assessment methods can be burdensome, especially for vulnerable populations, leading to decreased motivation and potentially unreliable results. Computerized Adaptive Testing (CAT) has emerged as a solution, offering efficient and personalized assessments. In particular, Machine Learning-based CAT (MT-based CATs) enables adaptive, rapid, and accurate evaluations that are more easily implementable than traditional methods. This approach bypasses typical item selection processes and the associated computational costs while avoiding the rigid assumptions of traditional CAT approaches. This study investigates the effectiveness of Machine Learning-Model Tree-based CAT (ML-MT-based CAT) in detecting changes in mental health measures collected at four time points (6-month intervals between February 2018 and December 2019). Three CATs measuring generalized anxiety, depression, and social anxiety were developed and tested on a dataset with responses from 564 participants. A cross-validation approach based on real data simulations was used. Results showed that ML-MT-based CATs produced estimates of trait levels comparable to full-length tests while reducing the number of items administered by 50% or more. In addition, ML-MT-based CATs captured changes in trait levels consistent with full-length tests, outperforming short static measures.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.