冠层高度模型与NAIP影像对。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Brady W Allred, Sarah E McCord, Scott L Morford
{"title":"冠层高度模型与NAIP影像对。","authors":"Brady W Allred, Sarah E McCord, Scott L Morford","doi":"10.1038/s41597-025-04655-z","DOIUrl":null,"url":null,"abstract":"<p><p>Canopy height models (CHM) provide detailed environmental vertical structure information and are an important indicator and input for ecological and geospatial applications. These models are often spatiotemporally inconsistent, necessitating additional modeling to scale them in space and time. Yet, such scaling is hindered by a lack of spatially diverse data. To address this, we use United States Geological Survey 3D Elevation Program lidar data to produce 22,796,764 one meter resolution CHM chips, stratified across the dominant land covers of the conterminous United States. For each CHM, we pair a matching time-aligned aerial image from the United States Department of Agriculture National Agriculture Imagery Program. This dataset can be used to train models for large scale CHM production.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"322"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846907/pdf/","citationCount":"0","resultStr":"{\"title\":\"Canopy height model and NAIP imagery pairs across CONUS.\",\"authors\":\"Brady W Allred, Sarah E McCord, Scott L Morford\",\"doi\":\"10.1038/s41597-025-04655-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Canopy height models (CHM) provide detailed environmental vertical structure information and are an important indicator and input for ecological and geospatial applications. These models are often spatiotemporally inconsistent, necessitating additional modeling to scale them in space and time. Yet, such scaling is hindered by a lack of spatially diverse data. To address this, we use United States Geological Survey 3D Elevation Program lidar data to produce 22,796,764 one meter resolution CHM chips, stratified across the dominant land covers of the conterminous United States. For each CHM, we pair a matching time-aligned aerial image from the United States Department of Agriculture National Agriculture Imagery Program. This dataset can be used to train models for large scale CHM production.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"322\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-04655-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04655-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

冠层高度模型(CHM)提供了详细的环境垂直结构信息,是生态和地理空间应用的重要指标和输入。这些模型通常在时空上不一致,需要额外的建模来在空间和时间上缩放它们。然而,这种缩放受到缺乏空间多样性数据的阻碍。为了解决这个问题,我们使用美国地质调查局3D高程计划激光雷达数据制作了22,796,764个一米分辨率的CHM芯片,在美国邻近的主要土地覆盖上分层。对于每个CHM,我们对来自美国农业部国家农业图像计划的匹配时间对齐航空图像进行配对。该数据集可用于训练大规模CHM生产的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Canopy height model and NAIP imagery pairs across CONUS.

Canopy height model and NAIP imagery pairs across CONUS.

Canopy height model and NAIP imagery pairs across CONUS.

Canopy height model and NAIP imagery pairs across CONUS.

Canopy height models (CHM) provide detailed environmental vertical structure information and are an important indicator and input for ecological and geospatial applications. These models are often spatiotemporally inconsistent, necessitating additional modeling to scale them in space and time. Yet, such scaling is hindered by a lack of spatially diverse data. To address this, we use United States Geological Survey 3D Elevation Program lidar data to produce 22,796,764 one meter resolution CHM chips, stratified across the dominant land covers of the conterminous United States. For each CHM, we pair a matching time-aligned aerial image from the United States Department of Agriculture National Agriculture Imagery Program. This dataset can be used to train models for large scale CHM production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信