{"title":"机器学习使用随机森林来区分头部创伤的击打和坠落情况。","authors":"Johair Temma, Luísa Nogueira, Frederic Santos, Gerald Quatrehomme, Caroline Bernardi, Veronique Alunni","doi":"10.1007/s00414-025-03440-2","DOIUrl":null,"url":null,"abstract":"<p><p>Blunt head trauma is a common occurrence in forensic practice. Interpreting the origin of craniocerebral injuries can be a challenging process, particularly when it comes to distinguishing between falls or inflicted blows. The objective of this study was to develop a predictive model using an innovative Random Forest (RF) classification approach to differentiate injuries caused by falls from those caused by blows. The study examined 65 cases of blunt head trauma over the age of 18 resulting from a fall or an inflicted blow. A preliminary univariate logistic regression analysis followed by RF classification was performed. The presence of a depressed fracture and the lateralisation on the left-sided of cranial vault fractures, as well as extra-axial bleeding, in particular an extra-dural haematoma, were indicative of inflicted blows. The RF classification provided a simple predictive model with an accuracy rate of 78% to identify the most relevant injury criteria for distinguishing between falls and assault situations involving blows.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning using random forest to differentiate between blow and fall situations of head trauma.\",\"authors\":\"Johair Temma, Luísa Nogueira, Frederic Santos, Gerald Quatrehomme, Caroline Bernardi, Veronique Alunni\",\"doi\":\"10.1007/s00414-025-03440-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blunt head trauma is a common occurrence in forensic practice. Interpreting the origin of craniocerebral injuries can be a challenging process, particularly when it comes to distinguishing between falls or inflicted blows. The objective of this study was to develop a predictive model using an innovative Random Forest (RF) classification approach to differentiate injuries caused by falls from those caused by blows. The study examined 65 cases of blunt head trauma over the age of 18 resulting from a fall or an inflicted blow. A preliminary univariate logistic regression analysis followed by RF classification was performed. The presence of a depressed fracture and the lateralisation on the left-sided of cranial vault fractures, as well as extra-axial bleeding, in particular an extra-dural haematoma, were indicative of inflicted blows. The RF classification provided a simple predictive model with an accuracy rate of 78% to identify the most relevant injury criteria for distinguishing between falls and assault situations involving blows.</p>\",\"PeriodicalId\":14071,\"journal\":{\"name\":\"International Journal of Legal Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Legal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00414-025-03440-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-025-03440-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Machine learning using random forest to differentiate between blow and fall situations of head trauma.
Blunt head trauma is a common occurrence in forensic practice. Interpreting the origin of craniocerebral injuries can be a challenging process, particularly when it comes to distinguishing between falls or inflicted blows. The objective of this study was to develop a predictive model using an innovative Random Forest (RF) classification approach to differentiate injuries caused by falls from those caused by blows. The study examined 65 cases of blunt head trauma over the age of 18 resulting from a fall or an inflicted blow. A preliminary univariate logistic regression analysis followed by RF classification was performed. The presence of a depressed fracture and the lateralisation on the left-sided of cranial vault fractures, as well as extra-axial bleeding, in particular an extra-dural haematoma, were indicative of inflicted blows. The RF classification provided a simple predictive model with an accuracy rate of 78% to identify the most relevant injury criteria for distinguishing between falls and assault situations involving blows.
期刊介绍:
The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.