聚焦超声介导的小鼠脑内淋巴转运的体内双光子显微镜成像。

IF 4.5 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Yan Gong, Kevin Xu, Dezhuang Ye, Yaoheng Yang, Mark J Miller, Ziang Feng, Song Hu, Hong Chen
{"title":"聚焦超声介导的小鼠脑内淋巴转运的体内双光子显微镜成像。","authors":"Yan Gong, Kevin Xu, Dezhuang Ye, Yaoheng Yang, Mark J Miller, Ziang Feng, Song Hu, Hong Chen","doi":"10.1177/0271678X251323369","DOIUrl":null,"url":null,"abstract":"<p><p>The glymphatic system regulates cerebrospinal fluid (CSF) transport and brain waste clearance. Focused ultrasound combined with microbubbles (FUSMB) has shown feasibility for manipulating glymphatic transport, yet its mechanisms remain poorly understood. In this work, we used in vivo two-photon microscopy to reveal how FUSMB manipulates the CSF tracer transport in the mouse brain. A FUS transducer was confocally aligned with the objective of a two-photon microscope. Fluorescently labeled albumin was infused into the CSF via cisterna magna. FUS sonication was applied following an intravenous injection of microbubbles. Dynamic imaging was performed through a cranial window to record local changes in vessel and tracer dynamics. The fluorescence intensity of the CSF tracer within the treated region decreased rapidly upon FUSMB treatment. Concurrently, vessel deformation was observed, and the fastest diameter changes were observed during FUSMB treatment. A linear correlation was identified between the rate of vessel diameter change and the rate of tracer intensity change. Moreover, given the same rate of vessel diameter change, the tracer intensity changed faster around larger vessels than smaller vessels. These findings offer insight into the potential biophysical mechanism of FUSMB-mediated glymphatic transport.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1281-1292"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846094/pdf/","citationCount":"0","resultStr":"{\"title\":\"In vivo two-photon microscopy imaging of focused ultrasound-mediated glymphatic transport in the mouse brain.\",\"authors\":\"Yan Gong, Kevin Xu, Dezhuang Ye, Yaoheng Yang, Mark J Miller, Ziang Feng, Song Hu, Hong Chen\",\"doi\":\"10.1177/0271678X251323369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The glymphatic system regulates cerebrospinal fluid (CSF) transport and brain waste clearance. Focused ultrasound combined with microbubbles (FUSMB) has shown feasibility for manipulating glymphatic transport, yet its mechanisms remain poorly understood. In this work, we used in vivo two-photon microscopy to reveal how FUSMB manipulates the CSF tracer transport in the mouse brain. A FUS transducer was confocally aligned with the objective of a two-photon microscope. Fluorescently labeled albumin was infused into the CSF via cisterna magna. FUS sonication was applied following an intravenous injection of microbubbles. Dynamic imaging was performed through a cranial window to record local changes in vessel and tracer dynamics. The fluorescence intensity of the CSF tracer within the treated region decreased rapidly upon FUSMB treatment. Concurrently, vessel deformation was observed, and the fastest diameter changes were observed during FUSMB treatment. A linear correlation was identified between the rate of vessel diameter change and the rate of tracer intensity change. Moreover, given the same rate of vessel diameter change, the tracer intensity changed faster around larger vessels than smaller vessels. These findings offer insight into the potential biophysical mechanism of FUSMB-mediated glymphatic transport.</p>\",\"PeriodicalId\":15325,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow and Metabolism\",\"volume\":\" \",\"pages\":\"1281-1292\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846094/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X251323369\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251323369","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

淋巴系统调节脑脊液(CSF)运输和脑废物清除。聚焦超声结合微泡(FUSMB)已显示出操纵淋巴运输的可行性,但其机制尚不清楚。在这项工作中,我们使用体内双光子显微镜来揭示FUSMB如何操纵脑脊液示踪剂在小鼠大脑中的运输。FUS换能器与双光子显微镜物镜共聚焦对准。荧光标记白蛋白经大池注入脑脊液。静脉注射微泡后应用FUS超声。通过颅窗进行动态成像,记录局部血管和示踪剂动态变化。FUSMB处理后,处理区域CSF示踪剂的荧光强度迅速下降。同时,观察到血管变形,在FUSMB处理期间观察到最快的直径变化。血管直径变化率与示踪剂强度变化率之间存在线性相关。此外,在相同的血管直径变化速率下,大血管周围的示踪剂强度变化快于小血管。这些发现为fusmb介导的淋巴运输的潜在生物物理机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vivo two-photon microscopy imaging of focused ultrasound-mediated glymphatic transport in the mouse brain.

The glymphatic system regulates cerebrospinal fluid (CSF) transport and brain waste clearance. Focused ultrasound combined with microbubbles (FUSMB) has shown feasibility for manipulating glymphatic transport, yet its mechanisms remain poorly understood. In this work, we used in vivo two-photon microscopy to reveal how FUSMB manipulates the CSF tracer transport in the mouse brain. A FUS transducer was confocally aligned with the objective of a two-photon microscope. Fluorescently labeled albumin was infused into the CSF via cisterna magna. FUS sonication was applied following an intravenous injection of microbubbles. Dynamic imaging was performed through a cranial window to record local changes in vessel and tracer dynamics. The fluorescence intensity of the CSF tracer within the treated region decreased rapidly upon FUSMB treatment. Concurrently, vessel deformation was observed, and the fastest diameter changes were observed during FUSMB treatment. A linear correlation was identified between the rate of vessel diameter change and the rate of tracer intensity change. Moreover, given the same rate of vessel diameter change, the tracer intensity changed faster around larger vessels than smaller vessels. These findings offer insight into the potential biophysical mechanism of FUSMB-mediated glymphatic transport.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信