萨库比特利/缬沙坦通过 PPARs 激活 FGF21 信号通路,部分缓解了心肌梗死损伤。

IF 8.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Wenjuan Wei, Guangsen Xu, Jiaer Gao, Guiyun Wang, Ye Wang, Caiyan Li, Junwei Zheng, Huiying Lu, Yunyan Lu, Kun Wang, Hongtao Xu, Cong Wang, Xuebo Pan
{"title":"萨库比特利/缬沙坦通过 PPARs 激活 FGF21 信号通路,部分缓解了心肌梗死损伤。","authors":"Wenjuan Wei, Guangsen Xu, Jiaer Gao, Guiyun Wang, Ye Wang, Caiyan Li, Junwei Zheng, Huiying Lu, Yunyan Lu, Kun Wang, Hongtao Xu, Cong Wang, Xuebo Pan","doi":"10.1186/s12933-025-02627-6","DOIUrl":null,"url":null,"abstract":"<p><p>The recent discovery of clinically significant data, alongside novel physiological and pathological occurrences surrounding sacubitril/valsartan (Sac/Val) beyond its approved indications, necessitates an urgent reevaluation of its underlying mechanism of action. In the present investigation, we observed a substantial elevation in the serum levels of fibroblast growth factor 21 (FGF21) among patients with acute myocardial infarction (AMI) who were administered Sac/Val, compared to those who were not, utilizing ELISA-based measurements. Furthermore, through the utilization of a mouse model of myocardial infarction induced by ligation of the left anterior descending branch, we confirmed that FGF21 mediates the cardioprotective effect of Sac/Val, employing both loss-of-function and gain-of-function approaches. Molecular docking and SPR experiments validated that Sac/Val can regulate FGF21 via its interaction with PPARs, and verified the role of PPARs in mediating Sac/Val regulation of FGF21 by inhibiting PPARs. In conclusion, we found that Sac/Val can act as an agonist of FGF21, which provides a new idea for the development of FGF21 drugs, and FGF21 as a new target of Sac/Val to ameliorate myocardial infarction, which provides a basis for new indications for Sac/Val.</p>","PeriodicalId":9374,"journal":{"name":"Cardiovascular Diabetology","volume":"24 1","pages":"89"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847388/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sacubitril/Valsartan partially alleviates myocardial infarction injury by activating the FGF21 signaling pathway via PPARs.\",\"authors\":\"Wenjuan Wei, Guangsen Xu, Jiaer Gao, Guiyun Wang, Ye Wang, Caiyan Li, Junwei Zheng, Huiying Lu, Yunyan Lu, Kun Wang, Hongtao Xu, Cong Wang, Xuebo Pan\",\"doi\":\"10.1186/s12933-025-02627-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recent discovery of clinically significant data, alongside novel physiological and pathological occurrences surrounding sacubitril/valsartan (Sac/Val) beyond its approved indications, necessitates an urgent reevaluation of its underlying mechanism of action. In the present investigation, we observed a substantial elevation in the serum levels of fibroblast growth factor 21 (FGF21) among patients with acute myocardial infarction (AMI) who were administered Sac/Val, compared to those who were not, utilizing ELISA-based measurements. Furthermore, through the utilization of a mouse model of myocardial infarction induced by ligation of the left anterior descending branch, we confirmed that FGF21 mediates the cardioprotective effect of Sac/Val, employing both loss-of-function and gain-of-function approaches. Molecular docking and SPR experiments validated that Sac/Val can regulate FGF21 via its interaction with PPARs, and verified the role of PPARs in mediating Sac/Val regulation of FGF21 by inhibiting PPARs. In conclusion, we found that Sac/Val can act as an agonist of FGF21, which provides a new idea for the development of FGF21 drugs, and FGF21 as a new target of Sac/Val to ameliorate myocardial infarction, which provides a basis for new indications for Sac/Val.</p>\",\"PeriodicalId\":9374,\"journal\":{\"name\":\"Cardiovascular Diabetology\",\"volume\":\"24 1\",\"pages\":\"89\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847388/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Diabetology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12933-025-02627-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Diabetology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12933-025-02627-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sacubitril/Valsartan partially alleviates myocardial infarction injury by activating the FGF21 signaling pathway via PPARs.

The recent discovery of clinically significant data, alongside novel physiological and pathological occurrences surrounding sacubitril/valsartan (Sac/Val) beyond its approved indications, necessitates an urgent reevaluation of its underlying mechanism of action. In the present investigation, we observed a substantial elevation in the serum levels of fibroblast growth factor 21 (FGF21) among patients with acute myocardial infarction (AMI) who were administered Sac/Val, compared to those who were not, utilizing ELISA-based measurements. Furthermore, through the utilization of a mouse model of myocardial infarction induced by ligation of the left anterior descending branch, we confirmed that FGF21 mediates the cardioprotective effect of Sac/Val, employing both loss-of-function and gain-of-function approaches. Molecular docking and SPR experiments validated that Sac/Val can regulate FGF21 via its interaction with PPARs, and verified the role of PPARs in mediating Sac/Val regulation of FGF21 by inhibiting PPARs. In conclusion, we found that Sac/Val can act as an agonist of FGF21, which provides a new idea for the development of FGF21 drugs, and FGF21 as a new target of Sac/Val to ameliorate myocardial infarction, which provides a basis for new indications for Sac/Val.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Diabetology
Cardiovascular Diabetology 医学-内分泌学与代谢
CiteScore
12.30
自引率
15.10%
发文量
240
审稿时长
1 months
期刊介绍: Cardiovascular Diabetology is a journal that welcomes manuscripts exploring various aspects of the relationship between diabetes, cardiovascular health, and the metabolic syndrome. We invite submissions related to clinical studies, genetic investigations, experimental research, pharmacological studies, epidemiological analyses, and molecular biology research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信