Chloe Hayes, Angus Mitchell, Roger Huerlimann, Jeffrey Jolly, Chengze Li, David J. Booth, Timothy Ravasi, Ivan Nagelkerken
{"title":"气候变化下新型冷缘珊瑚礁鱼类胃微生物群的简化","authors":"Chloe Hayes, Angus Mitchell, Roger Huerlimann, Jeffrey Jolly, Chengze Li, David J. Booth, Timothy Ravasi, Ivan Nagelkerken","doi":"10.1111/mec.17704","DOIUrl":null,"url":null,"abstract":"<p>Climate-driven range extensions of animals into higher latitudes are often facilitated by phenotypic plasticity. Modifications to habitat preference, behaviour and diet can increase the persistence of range-extending species in novel high-latitude ecosystems. These strategies may be influenced by changes in their gut and stomach microbial communities that are critical to host fitness and potentially adaptive plasticity. Yet, it remains unknown if the gut and stomach microbiome of range-extending species is plastic in their novel ranges to help facilitate these modifications. Here, we categorised stomach microbiome communities of a prevalent range-extending coral reef fish along a 2000-km latitudinal gradient in a global warming hotspot, extending from their tropical core range to their temperate cold range edge. At their cold range edge, the coral reef fish's stomach microbiome showed a 59% decrease in bacterial diversity and a 164% increase in the relative abundance of opportunistic bacteria (<i>Vibrio</i>) compared to their core range. Microbiome diversity was unaffected by fish body size, water temperature, physiology (cellular defence and damage) and habitat type (turf, barren, oyster, kelp and coral) across their range. The observed shifts in microbiome composition suggest dysbiosis and low plasticity of tropical range-extending fishes to novel environmental conditions (e.g., temperate prey and lower seawater temperature) at their novel range edges, which may increase their susceptibility to disease in temperate ecosystems. We conclude that fishes extending their ranges to higher latitudes under ocean warming can experience a simplification (i.e., reduced diversity) of their stomach microbiome, which could restrict their current rate of range extensions or establishment in temperate ecosystems.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 7","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17704","citationCount":"0","resultStr":"{\"title\":\"Stomach Microbiome Simplification of a Coral Reef Fish at Its Novel Cold-Range Edge Under Climate Change\",\"authors\":\"Chloe Hayes, Angus Mitchell, Roger Huerlimann, Jeffrey Jolly, Chengze Li, David J. Booth, Timothy Ravasi, Ivan Nagelkerken\",\"doi\":\"10.1111/mec.17704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate-driven range extensions of animals into higher latitudes are often facilitated by phenotypic plasticity. Modifications to habitat preference, behaviour and diet can increase the persistence of range-extending species in novel high-latitude ecosystems. These strategies may be influenced by changes in their gut and stomach microbial communities that are critical to host fitness and potentially adaptive plasticity. Yet, it remains unknown if the gut and stomach microbiome of range-extending species is plastic in their novel ranges to help facilitate these modifications. Here, we categorised stomach microbiome communities of a prevalent range-extending coral reef fish along a 2000-km latitudinal gradient in a global warming hotspot, extending from their tropical core range to their temperate cold range edge. At their cold range edge, the coral reef fish's stomach microbiome showed a 59% decrease in bacterial diversity and a 164% increase in the relative abundance of opportunistic bacteria (<i>Vibrio</i>) compared to their core range. Microbiome diversity was unaffected by fish body size, water temperature, physiology (cellular defence and damage) and habitat type (turf, barren, oyster, kelp and coral) across their range. The observed shifts in microbiome composition suggest dysbiosis and low plasticity of tropical range-extending fishes to novel environmental conditions (e.g., temperate prey and lower seawater temperature) at their novel range edges, which may increase their susceptibility to disease in temperate ecosystems. We conclude that fishes extending their ranges to higher latitudes under ocean warming can experience a simplification (i.e., reduced diversity) of their stomach microbiome, which could restrict their current rate of range extensions or establishment in temperate ecosystems.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\"34 7\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17704\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.17704\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.17704","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Stomach Microbiome Simplification of a Coral Reef Fish at Its Novel Cold-Range Edge Under Climate Change
Climate-driven range extensions of animals into higher latitudes are often facilitated by phenotypic plasticity. Modifications to habitat preference, behaviour and diet can increase the persistence of range-extending species in novel high-latitude ecosystems. These strategies may be influenced by changes in their gut and stomach microbial communities that are critical to host fitness and potentially adaptive plasticity. Yet, it remains unknown if the gut and stomach microbiome of range-extending species is plastic in their novel ranges to help facilitate these modifications. Here, we categorised stomach microbiome communities of a prevalent range-extending coral reef fish along a 2000-km latitudinal gradient in a global warming hotspot, extending from their tropical core range to their temperate cold range edge. At their cold range edge, the coral reef fish's stomach microbiome showed a 59% decrease in bacterial diversity and a 164% increase in the relative abundance of opportunistic bacteria (Vibrio) compared to their core range. Microbiome diversity was unaffected by fish body size, water temperature, physiology (cellular defence and damage) and habitat type (turf, barren, oyster, kelp and coral) across their range. The observed shifts in microbiome composition suggest dysbiosis and low plasticity of tropical range-extending fishes to novel environmental conditions (e.g., temperate prey and lower seawater temperature) at their novel range edges, which may increase their susceptibility to disease in temperate ecosystems. We conclude that fishes extending their ranges to higher latitudes under ocean warming can experience a simplification (i.e., reduced diversity) of their stomach microbiome, which could restrict their current rate of range extensions or establishment in temperate ecosystems.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms