Ben Wang, Yujing Zhang, Yuquan Ji, Guangzhao Yang, Xiaolong Zhang, Yi Zhou, Siyang Yu, Haotong Yin, Hui Zhou, Chao Yin, Quli Fan
{"title":"gsh响应半导体聚合物作为NIR-II成像引导化学光热治疗的纳米治疗平台。","authors":"Ben Wang, Yujing Zhang, Yuquan Ji, Guangzhao Yang, Xiaolong Zhang, Yi Zhou, Siyang Yu, Haotong Yin, Hui Zhou, Chao Yin, Quli Fan","doi":"10.1002/marc.202401098","DOIUrl":null,"url":null,"abstract":"<p>The development of multifunctional nanotheranostic platforms with stimuli-responsive capabilities holds significant potential for enhancing cancer diagnosis and treatment. Herein, a glutathione (GSH)-responsive semiconducting polymer (SP) nanotheranostic system, SP/DOX-SS-PEG nanoparticles (NPs), is presented, designed for combined near-infrared II (NIR-II) fluorescence imaging (FI) and chemo-photothermal therapy. The amphiphilic SP (SP-SS-PEG) is synthesized through a multi-step reaction sequence, including Suzuki coupling, amidation, and thiol-disulfide exchange reactions, and subsequently encapsulates the anticancer drug doxorubicin (DOX) through self-assembly, resulting in the formation of GSH-responsive SP/DOX-SS-PEG NPs. These SP/DOX-SS-PEG NPs exhibit high photothermal stability and significant GSH-triggered DOX release. In vitro studies demonstrate that SP/DOX-SS-PEG NPs display enhanced cellular uptake and robust cytotoxicity against 4T1 cancer cells under 808 nm laser irradiation. Upon intravenous injection in tumor-bearing mice, NIR-II FI reveals efficient tumor accumulation and prolonged retention of the NPs. In vivo anti-tumor efficacy studies indicate that SP/DOX-SS-PEG NPs combined with 808 nm laser irradiation achieve the most significant inhibition of tumor growth, with minimal systemic toxicity. Taken together, these findings highlight the promising potential of SP/DOX-SS-PEG NPs as a multifunctional platform for precision cancer theranostics, integrating efficient NIR-II imaging, GSH-triggered drug release, and dual chemo-photothermal therapy.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":"46 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GSH-Responsive Semiconducting Polymer as a Nanotheranostic Platform for NIR-II Imaging-Guided Chemo-Photothermal Therapy\",\"authors\":\"Ben Wang, Yujing Zhang, Yuquan Ji, Guangzhao Yang, Xiaolong Zhang, Yi Zhou, Siyang Yu, Haotong Yin, Hui Zhou, Chao Yin, Quli Fan\",\"doi\":\"10.1002/marc.202401098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of multifunctional nanotheranostic platforms with stimuli-responsive capabilities holds significant potential for enhancing cancer diagnosis and treatment. Herein, a glutathione (GSH)-responsive semiconducting polymer (SP) nanotheranostic system, SP/DOX-SS-PEG nanoparticles (NPs), is presented, designed for combined near-infrared II (NIR-II) fluorescence imaging (FI) and chemo-photothermal therapy. The amphiphilic SP (SP-SS-PEG) is synthesized through a multi-step reaction sequence, including Suzuki coupling, amidation, and thiol-disulfide exchange reactions, and subsequently encapsulates the anticancer drug doxorubicin (DOX) through self-assembly, resulting in the formation of GSH-responsive SP/DOX-SS-PEG NPs. These SP/DOX-SS-PEG NPs exhibit high photothermal stability and significant GSH-triggered DOX release. In vitro studies demonstrate that SP/DOX-SS-PEG NPs display enhanced cellular uptake and robust cytotoxicity against 4T1 cancer cells under 808 nm laser irradiation. Upon intravenous injection in tumor-bearing mice, NIR-II FI reveals efficient tumor accumulation and prolonged retention of the NPs. In vivo anti-tumor efficacy studies indicate that SP/DOX-SS-PEG NPs combined with 808 nm laser irradiation achieve the most significant inhibition of tumor growth, with minimal systemic toxicity. Taken together, these findings highlight the promising potential of SP/DOX-SS-PEG NPs as a multifunctional platform for precision cancer theranostics, integrating efficient NIR-II imaging, GSH-triggered drug release, and dual chemo-photothermal therapy.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\"46 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/marc.202401098\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/marc.202401098","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
具有刺激响应能力的多功能纳米治疗平台的发展在加强癌症诊断和治疗方面具有重大潜力。本文提出了一种谷胱甘肽(GSH)响应半导体聚合物(SP)纳米治疗系统,SP/DOX-SS-PEG纳米颗粒(NPs),设计用于近红外II (NIR-II)荧光成像(FI)和化学光热治疗。两亲性SP (SP- ss - peg)通过铃木偶联、酰胺化、巯基二硫交换反应等多步反应序列合成,随后通过自组装包封抗癌药物多柔比星(DOX),形成gsh响应的SP/DOX- ss - peg np。这些SP/DOX- ss - peg NPs具有高光热稳定性和显著的gsh触发DOX释放。体外研究表明,SP/DOX-SS-PEG NPs在808 nm激光照射下对4T1癌细胞表现出增强的细胞摄取和强大的细胞毒性。在荷瘤小鼠静脉注射后,NIR-II FI显示有效的肿瘤积累和NPs的延长保留。体内抗肿瘤疗效研究表明,SP/DOX-SS-PEG NPs联合808 nm激光照射对肿瘤生长的抑制作用最为显著,且全身毒性最小。综上所述,这些发现突出了SP/DOX-SS-PEG NPs作为精确癌症治疗的多功能平台的潜力,它整合了高效的NIR-II成像、gsh触发的药物释放和双重化学光热治疗。
GSH-Responsive Semiconducting Polymer as a Nanotheranostic Platform for NIR-II Imaging-Guided Chemo-Photothermal Therapy
The development of multifunctional nanotheranostic platforms with stimuli-responsive capabilities holds significant potential for enhancing cancer diagnosis and treatment. Herein, a glutathione (GSH)-responsive semiconducting polymer (SP) nanotheranostic system, SP/DOX-SS-PEG nanoparticles (NPs), is presented, designed for combined near-infrared II (NIR-II) fluorescence imaging (FI) and chemo-photothermal therapy. The amphiphilic SP (SP-SS-PEG) is synthesized through a multi-step reaction sequence, including Suzuki coupling, amidation, and thiol-disulfide exchange reactions, and subsequently encapsulates the anticancer drug doxorubicin (DOX) through self-assembly, resulting in the formation of GSH-responsive SP/DOX-SS-PEG NPs. These SP/DOX-SS-PEG NPs exhibit high photothermal stability and significant GSH-triggered DOX release. In vitro studies demonstrate that SP/DOX-SS-PEG NPs display enhanced cellular uptake and robust cytotoxicity against 4T1 cancer cells under 808 nm laser irradiation. Upon intravenous injection in tumor-bearing mice, NIR-II FI reveals efficient tumor accumulation and prolonged retention of the NPs. In vivo anti-tumor efficacy studies indicate that SP/DOX-SS-PEG NPs combined with 808 nm laser irradiation achieve the most significant inhibition of tumor growth, with minimal systemic toxicity. Taken together, these findings highlight the promising potential of SP/DOX-SS-PEG NPs as a multifunctional platform for precision cancer theranostics, integrating efficient NIR-II imaging, GSH-triggered drug release, and dual chemo-photothermal therapy.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.