海水纳米结构用于生态友好型双功能活化剂-催化剂,产生石墨烯装饰的活化生物炭,应用于电化学储能。

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Authit Phakkhawan , Suppanat Kosolwattana , Morakot Sakulsombat , Samuk Pimanpang , Pawinee Klangtakai , Vittaya Amornkitbamrung
{"title":"海水纳米结构用于生态友好型双功能活化剂-催化剂,产生石墨烯装饰的活化生物炭,应用于电化学储能。","authors":"Authit Phakkhawan ,&nbsp;Suppanat Kosolwattana ,&nbsp;Morakot Sakulsombat ,&nbsp;Samuk Pimanpang ,&nbsp;Pawinee Klangtakai ,&nbsp;Vittaya Amornkitbamrung","doi":"10.1016/j.envres.2025.121176","DOIUrl":null,"url":null,"abstract":"<div><div>Activated biochar (AB) powder derived from sawdust was prepared using 0.6 M NaCl as a dual-function activator-catalyst at temperatures ranging from 500 to 1000 °C. The AB synthesized at 900 °C (NaCl-AB-900) shows the highest specific surface area (880.05 m<sup>2</sup> g<sup>−1</sup>). Seawater was then used as the dual activator-catalyst to explore sustainable alternatives, producing Seawater-AB-900 powder with a specific surface area similar to the NaCl-AB-900 powder (890.34 m<sup>2</sup> g<sup>−1</sup>). In contrast, the non-activated biochar (Non-AB-900, 782.45 m<sup>2</sup> g<sup>−1</sup>) has a smaller specific surface area than both AB powders. SEM and TEM analyses reveal that both AB powders have graphene decoration and porosity, whereas the Non-AB-900 powder only exhibits porosity. Electrodes made from NaCl-AB-900 and Seawater-AB-900 powders demonstrate higher specific capacitances (81.42 and 84.45 F g<sup>−1</sup>) compared to Non-AB-900 (64.39 F g<sup>−1</sup>) at 0.3 A g<sup>−1</sup> in a three-electrode system using 6 M KOH. They also exhibit better rate capability (76.54% and 70.44%) than Non-AB-900 (65.24%). In a two-electrode mode, NaCl-AB-900 and Seawater-AB-900 supercapacitors outperform Non-AB-900 in capacitance (51.76 F g<sup>−1</sup>, 50.68 F g<sup>−1</sup> vs. 25.96 F g<sup>−1</sup> at 0.3 A g<sup>−1</sup>) and rate capability (64.50%, 65.20% vs. 27.59% at 10 A g<sup>−1</sup>). In a Zn-ion battery system, NaCl-AB-900 (137.07 mAh g<sup>−1</sup>) and Seawater-AB-900 (142.29 mAh g<sup>−1</sup>) deliver higher specific capacities than Non-AB-900 (69.03 mAh g<sup>−1</sup>) at 0.3 A g<sup>−1</sup>. Both AB electrodes show excellent cycle stability, with over 70% retention after 40000 supercapacitor cycles and 90% after 7000 battery cycles. The Seawater-AB-900-powered supercapacitors and batteries successfully lit an LED for over 2 min.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"272 ","pages":"Article 121176"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seawater nanoarchitectonics for an eco-friendly dual-function activator-catalyst producing graphene-decorated activated biochar for applications in electrochemical energy storage\",\"authors\":\"Authit Phakkhawan ,&nbsp;Suppanat Kosolwattana ,&nbsp;Morakot Sakulsombat ,&nbsp;Samuk Pimanpang ,&nbsp;Pawinee Klangtakai ,&nbsp;Vittaya Amornkitbamrung\",\"doi\":\"10.1016/j.envres.2025.121176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Activated biochar (AB) powder derived from sawdust was prepared using 0.6 M NaCl as a dual-function activator-catalyst at temperatures ranging from 500 to 1000 °C. The AB synthesized at 900 °C (NaCl-AB-900) shows the highest specific surface area (880.05 m<sup>2</sup> g<sup>−1</sup>). Seawater was then used as the dual activator-catalyst to explore sustainable alternatives, producing Seawater-AB-900 powder with a specific surface area similar to the NaCl-AB-900 powder (890.34 m<sup>2</sup> g<sup>−1</sup>). In contrast, the non-activated biochar (Non-AB-900, 782.45 m<sup>2</sup> g<sup>−1</sup>) has a smaller specific surface area than both AB powders. SEM and TEM analyses reveal that both AB powders have graphene decoration and porosity, whereas the Non-AB-900 powder only exhibits porosity. Electrodes made from NaCl-AB-900 and Seawater-AB-900 powders demonstrate higher specific capacitances (81.42 and 84.45 F g<sup>−1</sup>) compared to Non-AB-900 (64.39 F g<sup>−1</sup>) at 0.3 A g<sup>−1</sup> in a three-electrode system using 6 M KOH. They also exhibit better rate capability (76.54% and 70.44%) than Non-AB-900 (65.24%). In a two-electrode mode, NaCl-AB-900 and Seawater-AB-900 supercapacitors outperform Non-AB-900 in capacitance (51.76 F g<sup>−1</sup>, 50.68 F g<sup>−1</sup> vs. 25.96 F g<sup>−1</sup> at 0.3 A g<sup>−1</sup>) and rate capability (64.50%, 65.20% vs. 27.59% at 10 A g<sup>−1</sup>). In a Zn-ion battery system, NaCl-AB-900 (137.07 mAh g<sup>−1</sup>) and Seawater-AB-900 (142.29 mAh g<sup>−1</sup>) deliver higher specific capacities than Non-AB-900 (69.03 mAh g<sup>−1</sup>) at 0.3 A g<sup>−1</sup>. Both AB electrodes show excellent cycle stability, with over 70% retention after 40000 supercapacitor cycles and 90% after 7000 battery cycles. The Seawater-AB-900-powered supercapacitors and batteries successfully lit an LED for over 2 min.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"272 \",\"pages\":\"Article 121176\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001393512500427X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001393512500427X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Seawater nanoarchitectonics for an eco-friendly dual-function activator-catalyst producing graphene-decorated activated biochar for applications in electrochemical energy storage

Seawater nanoarchitectonics for an eco-friendly dual-function activator-catalyst producing graphene-decorated activated biochar for applications in electrochemical energy storage
Activated biochar (AB) powder derived from sawdust was prepared using 0.6 M NaCl as a dual-function activator-catalyst at temperatures ranging from 500 to 1000 °C. The AB synthesized at 900 °C (NaCl-AB-900) shows the highest specific surface area (880.05 m2 g−1). Seawater was then used as the dual activator-catalyst to explore sustainable alternatives, producing Seawater-AB-900 powder with a specific surface area similar to the NaCl-AB-900 powder (890.34 m2 g−1). In contrast, the non-activated biochar (Non-AB-900, 782.45 m2 g−1) has a smaller specific surface area than both AB powders. SEM and TEM analyses reveal that both AB powders have graphene decoration and porosity, whereas the Non-AB-900 powder only exhibits porosity. Electrodes made from NaCl-AB-900 and Seawater-AB-900 powders demonstrate higher specific capacitances (81.42 and 84.45 F g−1) compared to Non-AB-900 (64.39 F g−1) at 0.3 A g−1 in a three-electrode system using 6 M KOH. They also exhibit better rate capability (76.54% and 70.44%) than Non-AB-900 (65.24%). In a two-electrode mode, NaCl-AB-900 and Seawater-AB-900 supercapacitors outperform Non-AB-900 in capacitance (51.76 F g−1, 50.68 F g−1 vs. 25.96 F g−1 at 0.3 A g−1) and rate capability (64.50%, 65.20% vs. 27.59% at 10 A g−1). In a Zn-ion battery system, NaCl-AB-900 (137.07 mAh g−1) and Seawater-AB-900 (142.29 mAh g−1) deliver higher specific capacities than Non-AB-900 (69.03 mAh g−1) at 0.3 A g−1. Both AB electrodes show excellent cycle stability, with over 70% retention after 40000 supercapacitor cycles and 90% after 7000 battery cycles. The Seawater-AB-900-powered supercapacitors and batteries successfully lit an LED for over 2 min.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信