通过可微分建模统一基于物理和机器学习模拟的挑战:陆地表面案例研究

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Shahryar K. Ahmad, Sujay V. Kumar, Clara Draper, Rolf H. Reichle
{"title":"通过可微分建模统一基于物理和机器学习模拟的挑战:陆地表面案例研究","authors":"Shahryar K. Ahmad,&nbsp;Sujay V. Kumar,&nbsp;Clara Draper,&nbsp;Rolf H. Reichle","doi":"10.1029/2024GL112893","DOIUrl":null,"url":null,"abstract":"<p>Differentiable geoscientific modeling has shown promise for leveraging machine learning (ML) to unify physically based and data-based modeling. Here, we critically analyze this promise in the context of large-scale parameter optimization with the Noah-MP land model as an example. The differentiable parameter learning framework is used to calibrate Noah-MP soil and vegetation parameters such that the simulated surface soil moisture better matches satellite observations over the contiguous US. We found that the optimized parameters only marginally improved soil moisture (average RMSE = 0.092 m<sup>3 </sup>m<sup>−3</sup>) upon uncalibrated Noah-MP (RMSE = 0.10 m<sup>3</sup> m<sup>−3</sup>). Scaling and bias correction factors, often used in ML approaches for enhancing generalizability, were found to limit the transferability of the optimized physical parameters to the land model. The global objective function further compromises the algorithm's ability to simultaneously capture contrasting moisture regimes. Addressing these challenges is necessary to advance ML-based calibration frameworks to better learn and represent the constraints of the physical model.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112893","citationCount":"0","resultStr":"{\"title\":\"Challenges in Unifying Physically Based and Machine Learning Simulations Through Differentiable Modeling: A Land Surface Case Study\",\"authors\":\"Shahryar K. Ahmad,&nbsp;Sujay V. Kumar,&nbsp;Clara Draper,&nbsp;Rolf H. Reichle\",\"doi\":\"10.1029/2024GL112893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Differentiable geoscientific modeling has shown promise for leveraging machine learning (ML) to unify physically based and data-based modeling. Here, we critically analyze this promise in the context of large-scale parameter optimization with the Noah-MP land model as an example. The differentiable parameter learning framework is used to calibrate Noah-MP soil and vegetation parameters such that the simulated surface soil moisture better matches satellite observations over the contiguous US. We found that the optimized parameters only marginally improved soil moisture (average RMSE = 0.092 m<sup>3 </sup>m<sup>−3</sup>) upon uncalibrated Noah-MP (RMSE = 0.10 m<sup>3</sup> m<sup>−3</sup>). Scaling and bias correction factors, often used in ML approaches for enhancing generalizability, were found to limit the transferability of the optimized physical parameters to the land model. The global objective function further compromises the algorithm's ability to simultaneously capture contrasting moisture regimes. Addressing these challenges is necessary to advance ML-based calibration frameworks to better learn and represent the constraints of the physical model.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 4\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112893\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL112893\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL112893","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可微分地球科学建模已经显示出利用机器学习(ML)统一基于物理和基于数据的建模的前景。在这里,我们以Noah-MP土地模型为例,在大规模参数优化的背景下批判性地分析了这一前景。可微参数学习框架用于校准Noah-MP土壤和植被参数,使模拟的地表土壤湿度与美国连续地区的卫星观测结果更好地匹配。我们发现,在未校准的Noah-MP (RMSE = 0.10 m3 m - 3)上,优化参数仅略微改善了土壤湿度(平均RMSE = 0.092 m3 m - 3)。研究发现,在机器学习方法中经常使用的比例和偏差校正因子限制了优化物理参数对土地模型的可转移性。全局目标函数进一步损害了算法同时捕获对比湿度状态的能力。解决这些挑战是必要的,以推进基于ml的校准框架,以更好地学习和表示物理模型的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Challenges in Unifying Physically Based and Machine Learning Simulations Through Differentiable Modeling: A Land Surface Case Study

Challenges in Unifying Physically Based and Machine Learning Simulations Through Differentiable Modeling: A Land Surface Case Study

Differentiable geoscientific modeling has shown promise for leveraging machine learning (ML) to unify physically based and data-based modeling. Here, we critically analyze this promise in the context of large-scale parameter optimization with the Noah-MP land model as an example. The differentiable parameter learning framework is used to calibrate Noah-MP soil and vegetation parameters such that the simulated surface soil moisture better matches satellite observations over the contiguous US. We found that the optimized parameters only marginally improved soil moisture (average RMSE = 0.092 mm−3) upon uncalibrated Noah-MP (RMSE = 0.10 m3 m−3). Scaling and bias correction factors, often used in ML approaches for enhancing generalizability, were found to limit the transferability of the optimized physical parameters to the land model. The global objective function further compromises the algorithm's ability to simultaneously capture contrasting moisture regimes. Addressing these challenges is necessary to advance ML-based calibration frameworks to better learn and represent the constraints of the physical model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信