手性铜(I)配合物与非手性聚合物共组装增强圆偏振发光

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ting Liu, Muxin Yu, Yangxingyu Ye, Yunfang Zhao, Zhijia Li, Zhiyuan Wu, Feilong Jiang, Lian Chen, Maochun Hong
{"title":"手性铜(I)配合物与非手性聚合物共组装增强圆偏振发光","authors":"Ting Liu,&nbsp;Muxin Yu,&nbsp;Yangxingyu Ye,&nbsp;Yunfang Zhao,&nbsp;Zhijia Li,&nbsp;Zhiyuan Wu,&nbsp;Feilong Jiang,&nbsp;Lian Chen,&nbsp;Maochun Hong","doi":"10.1007/s11426-024-2238-8","DOIUrl":null,"url":null,"abstract":"<div><p>Circularly polarized luminescence (CPL) has attracted growing attention for their promising applications in chiral functional devices. Achieving CPL materials with both high luminescence dissymmetry factors (<i>g</i><sub>lum</sub>) and emission efficiency is attractive but remains great challenges. In this study, a pair of chiral Cu(I) complexes named <i>R/S</i>-CuI with <i>C</i><sub>2</sub> symmetry were synthesized, exhibiting no emission in solution and weak CPL with <i>g</i><sub>lum</sub> = ± 3.3×10<sup>−3</sup> in crystalline state. Transparent chiral films (<i>R/S</i>-CuI-film) were developed through the co-assembly of <i>R/S</i>-CuI and achiral polymer PMMA. The films show bright green luminescence with the quantum yields about 200 times higher than those in crystalline state. Meanwhile, the maximum |<i>g</i><sub>lum</sub>| value is also amplified by approximately 2.5 times, reaching to 8.7×10<sup>−3</sup>. Mechanism investigation suggests that the notable enhancement of luminescence efficiency can be ascribed to the restriction of the intramolecular motions and the elimination of the oxygen quenching effect, while the improvement in <i>g</i><sub>lum</sub> values may be explained by the chirality transfer from the axially chiral molecule <i>R/S</i>-CuI to the achiral polymer PMMA. Furthermore, <i>R/S</i>-CuI-film were used for advanced information encryption applications based on its CPL characteristics. This work may provide new inspirations for the construction of CPL-active films with high performance, thereby expediting their further development.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 3","pages":"935 - 942"},"PeriodicalIF":10.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-assembly of chiral copper(I) complexes and achiral polymer for enhanced circularly polarized luminescence\",\"authors\":\"Ting Liu,&nbsp;Muxin Yu,&nbsp;Yangxingyu Ye,&nbsp;Yunfang Zhao,&nbsp;Zhijia Li,&nbsp;Zhiyuan Wu,&nbsp;Feilong Jiang,&nbsp;Lian Chen,&nbsp;Maochun Hong\",\"doi\":\"10.1007/s11426-024-2238-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Circularly polarized luminescence (CPL) has attracted growing attention for their promising applications in chiral functional devices. Achieving CPL materials with both high luminescence dissymmetry factors (<i>g</i><sub>lum</sub>) and emission efficiency is attractive but remains great challenges. In this study, a pair of chiral Cu(I) complexes named <i>R/S</i>-CuI with <i>C</i><sub>2</sub> symmetry were synthesized, exhibiting no emission in solution and weak CPL with <i>g</i><sub>lum</sub> = ± 3.3×10<sup>−3</sup> in crystalline state. Transparent chiral films (<i>R/S</i>-CuI-film) were developed through the co-assembly of <i>R/S</i>-CuI and achiral polymer PMMA. The films show bright green luminescence with the quantum yields about 200 times higher than those in crystalline state. Meanwhile, the maximum |<i>g</i><sub>lum</sub>| value is also amplified by approximately 2.5 times, reaching to 8.7×10<sup>−3</sup>. Mechanism investigation suggests that the notable enhancement of luminescence efficiency can be ascribed to the restriction of the intramolecular motions and the elimination of the oxygen quenching effect, while the improvement in <i>g</i><sub>lum</sub> values may be explained by the chirality transfer from the axially chiral molecule <i>R/S</i>-CuI to the achiral polymer PMMA. Furthermore, <i>R/S</i>-CuI-film were used for advanced information encryption applications based on its CPL characteristics. This work may provide new inspirations for the construction of CPL-active films with high performance, thereby expediting their further development.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"68 3\",\"pages\":\"935 - 942\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-024-2238-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2238-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

圆偏振光因其在手性功能器件中的应用前景而受到越来越多的关注。实现高发光不对称系数(glum)和高发射效率的CPL材料是有吸引力的,但仍然是巨大的挑战。本研究合成了一对具有C2对称性的手性Cu(I)配合物R/S-CuI,在溶液中无发射,在结晶状态下表现为glum =±3.3×10−3的弱CPL。通过将R/S-CuI与非手性聚合物PMMA共组装,制备了透明手性薄膜(R/S-CuI-film)。薄膜发出明亮的绿色光,量子产率比晶体高约200倍。同时,最大|glum|值也被放大了约2.5倍,达到8.7×10−3。机理研究表明,发光效率的显著提高可归因于分子内运动的限制和氧猝灭效应的消除,而glum值的提高可能是由轴手性分子R/S-CuI向非手性聚合物PMMA的手性转移所致。此外,基于R/ s - cui薄膜的CPL特性,将其用于高级信息加密应用。本研究为构建高性能的cpld活性薄膜提供了新的启示,从而加快其进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-assembly of chiral copper(I) complexes and achiral polymer for enhanced circularly polarized luminescence

Circularly polarized luminescence (CPL) has attracted growing attention for their promising applications in chiral functional devices. Achieving CPL materials with both high luminescence dissymmetry factors (glum) and emission efficiency is attractive but remains great challenges. In this study, a pair of chiral Cu(I) complexes named R/S-CuI with C2 symmetry were synthesized, exhibiting no emission in solution and weak CPL with glum = ± 3.3×10−3 in crystalline state. Transparent chiral films (R/S-CuI-film) were developed through the co-assembly of R/S-CuI and achiral polymer PMMA. The films show bright green luminescence with the quantum yields about 200 times higher than those in crystalline state. Meanwhile, the maximum |glum| value is also amplified by approximately 2.5 times, reaching to 8.7×10−3. Mechanism investigation suggests that the notable enhancement of luminescence efficiency can be ascribed to the restriction of the intramolecular motions and the elimination of the oxygen quenching effect, while the improvement in glum values may be explained by the chirality transfer from the axially chiral molecule R/S-CuI to the achiral polymer PMMA. Furthermore, R/S-CuI-film were used for advanced information encryption applications based on its CPL characteristics. This work may provide new inspirations for the construction of CPL-active films with high performance, thereby expediting their further development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信