核反应堆压力容器出口喷嘴加固件全覆盖超声信号检测仿真与分析

IF 3 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Maocheng Hong , Yilin Li , Jingli Yan , Guanbing Ma , Xin Ye , Huaidong Chen , Xiaobing Zhang
{"title":"核反应堆压力容器出口喷嘴加固件全覆盖超声信号检测仿真与分析","authors":"Maocheng Hong ,&nbsp;Yilin Li ,&nbsp;Jingli Yan ,&nbsp;Guanbing Ma ,&nbsp;Xin Ye ,&nbsp;Huaidong Chen ,&nbsp;Xiaobing Zhang","doi":"10.1016/j.ijpvp.2025.105462","DOIUrl":null,"url":null,"abstract":"<div><div>Pressurized water reactors (PWRs) are the predominant type of nuclear power plant globally, with their reactor pressure vessels (RPVs) subject to stringent in-service inspection (ISI) requirements as mandated by regulatory standards. However, the complex curved surface of the reinforcement part presents challenges for ultrasonic testing in the outlet nozzle-to-shell weld areas, resulting in inaccessible zones that lack practical quantitative analysis methods for volume coverage. This study systematically parameterized the geometric features of the outlet nozzle reinforcement part, including the cone, fillet, and ellipse. It introduced seven categories of ultrasonic beam tangent segmentation algorithms based on spatial curves. Using Pro/E software, we developed a 3D ultrasonic beamline model of inaccessible zones and validated its accuracy against two-dimensional data obtained from AutoCAD. Building on this foundation, a fully parametric simulation model and discrete volume data were employed to plot the continuous curves of inaccessible zones’ volume on the side of the typical outlet nozzle reinforcement part as a function of ultrasonic incidence angles, elucidating the nonlinear, multi-stage superimposed impact of complex surface characteristics on the volume of inaccessible zones. This research provides vital theoretical support and a methodological basis for optimizing ultrasonic testing processes and quantitative evaluation of volume coverage in nozzle areas with complex surfaces, particularly saddle-like profiles.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"216 ","pages":"Article 105462"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and analysis of full-coverage ultrasonic signal detection for reinforcement part of nuclear reactor pressure vessel outlet nozzle\",\"authors\":\"Maocheng Hong ,&nbsp;Yilin Li ,&nbsp;Jingli Yan ,&nbsp;Guanbing Ma ,&nbsp;Xin Ye ,&nbsp;Huaidong Chen ,&nbsp;Xiaobing Zhang\",\"doi\":\"10.1016/j.ijpvp.2025.105462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pressurized water reactors (PWRs) are the predominant type of nuclear power plant globally, with their reactor pressure vessels (RPVs) subject to stringent in-service inspection (ISI) requirements as mandated by regulatory standards. However, the complex curved surface of the reinforcement part presents challenges for ultrasonic testing in the outlet nozzle-to-shell weld areas, resulting in inaccessible zones that lack practical quantitative analysis methods for volume coverage. This study systematically parameterized the geometric features of the outlet nozzle reinforcement part, including the cone, fillet, and ellipse. It introduced seven categories of ultrasonic beam tangent segmentation algorithms based on spatial curves. Using Pro/E software, we developed a 3D ultrasonic beamline model of inaccessible zones and validated its accuracy against two-dimensional data obtained from AutoCAD. Building on this foundation, a fully parametric simulation model and discrete volume data were employed to plot the continuous curves of inaccessible zones’ volume on the side of the typical outlet nozzle reinforcement part as a function of ultrasonic incidence angles, elucidating the nonlinear, multi-stage superimposed impact of complex surface characteristics on the volume of inaccessible zones. This research provides vital theoretical support and a methodological basis for optimizing ultrasonic testing processes and quantitative evaluation of volume coverage in nozzle areas with complex surfaces, particularly saddle-like profiles.</div></div>\",\"PeriodicalId\":54946,\"journal\":{\"name\":\"International Journal of Pressure Vessels and Piping\",\"volume\":\"216 \",\"pages\":\"Article 105462\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pressure Vessels and Piping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308016125000328\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016125000328","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

压水堆(PWRs)是全球主要的核电站类型,其反应堆压力容器(rpv)受到严格的在役检查(ISI)要求,这是监管标准的强制要求。然而,增强件复杂的曲面对出口喷嘴-壳体焊缝区域的超声检测提出了挑战,导致无法进入的区域缺乏实用的体积覆盖定量分析方法。本研究系统地参数化了出口喷嘴加固部分的几何特征,包括圆锥、圆角和椭圆。介绍了7类基于空间曲线的超声波束切线分割算法。利用Pro/E软件建立了不可达区域的三维超声波束线模型,并与AutoCAD中获得的二维数据验证了其准确性。在此基础上,利用全参数化仿真模型和离散体积数据,绘制了典型出口喷管加固件侧面不可达区体积随超声入射角的连续曲线,阐明了复杂表面特征对不可达区体积的非线性、多阶段叠加影响。该研究为优化超声检测工艺和定量评估复杂表面(特别是鞍形轮廓)喷嘴区域的体积覆盖率提供了重要的理论支持和方法基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation and analysis of full-coverage ultrasonic signal detection for reinforcement part of nuclear reactor pressure vessel outlet nozzle
Pressurized water reactors (PWRs) are the predominant type of nuclear power plant globally, with their reactor pressure vessels (RPVs) subject to stringent in-service inspection (ISI) requirements as mandated by regulatory standards. However, the complex curved surface of the reinforcement part presents challenges for ultrasonic testing in the outlet nozzle-to-shell weld areas, resulting in inaccessible zones that lack practical quantitative analysis methods for volume coverage. This study systematically parameterized the geometric features of the outlet nozzle reinforcement part, including the cone, fillet, and ellipse. It introduced seven categories of ultrasonic beam tangent segmentation algorithms based on spatial curves. Using Pro/E software, we developed a 3D ultrasonic beamline model of inaccessible zones and validated its accuracy against two-dimensional data obtained from AutoCAD. Building on this foundation, a fully parametric simulation model and discrete volume data were employed to plot the continuous curves of inaccessible zones’ volume on the side of the typical outlet nozzle reinforcement part as a function of ultrasonic incidence angles, elucidating the nonlinear, multi-stage superimposed impact of complex surface characteristics on the volume of inaccessible zones. This research provides vital theoretical support and a methodological basis for optimizing ultrasonic testing processes and quantitative evaluation of volume coverage in nozzle areas with complex surfaces, particularly saddle-like profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
13.30%
发文量
208
审稿时长
17 months
期刊介绍: Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants. The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome: • Pressure vessel engineering • Structural integrity assessment • Design methods • Codes and standards • Fabrication and welding • Materials properties requirements • Inspection and quality management • Maintenance and life extension • Ageing and environmental effects • Life management Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time. International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信