非线性反应扩散系统的一种具有维数分裂的四阶指数差分格式

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
E.O. Asante-Asamani , A. Kleefeld , B.A. Wade
{"title":"非线性反应扩散系统的一种具有维数分裂的四阶指数差分格式","authors":"E.O. Asante-Asamani ,&nbsp;A. Kleefeld ,&nbsp;B.A. Wade","doi":"10.1016/j.cam.2025.116568","DOIUrl":null,"url":null,"abstract":"<div><div>A fourth-order exponential time differencing (ETD) Runge–Kutta scheme with dimensional splitting is developed to solve multidimensional non-linear systems of reaction–diffusion equations (RDE). By approximating the matrix exponential in the scheme with the A-acceptable Padé (2,2) rational function, the resulting scheme (ETDRK4P22-IF) is verified empirically to be fourth-order accurate for several RDE. The scheme is shown to be more efficient than competing fourth-order ETD and IMEX schemes, achieving up to 20X speed-up in CPU time. Inclusion of up to three pre-smoothing steps of a lower order L-stable scheme facilitates efficient damping of spurious oscillations arising from problems with non-smooth initial/boundary conditions.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"465 ","pages":"Article 116568"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fourth-order exponential time differencing scheme with dimensional splitting for non-linear reaction–diffusion systems\",\"authors\":\"E.O. Asante-Asamani ,&nbsp;A. Kleefeld ,&nbsp;B.A. Wade\",\"doi\":\"10.1016/j.cam.2025.116568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A fourth-order exponential time differencing (ETD) Runge–Kutta scheme with dimensional splitting is developed to solve multidimensional non-linear systems of reaction–diffusion equations (RDE). By approximating the matrix exponential in the scheme with the A-acceptable Padé (2,2) rational function, the resulting scheme (ETDRK4P22-IF) is verified empirically to be fourth-order accurate for several RDE. The scheme is shown to be more efficient than competing fourth-order ETD and IMEX schemes, achieving up to 20X speed-up in CPU time. Inclusion of up to three pre-smoothing steps of a lower order L-stable scheme facilitates efficient damping of spurious oscillations arising from problems with non-smooth initial/boundary conditions.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"465 \",\"pages\":\"Article 116568\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725000834\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725000834","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种具有维数分裂的四阶指数时差(ETD)龙格-库塔格式,用于求解多维非线性反应扩散方程组。通过用a可接受的pad(2,2)有理函数逼近格式中的矩阵指数,经验验证了所得格式(ETDRK4P22-IF)对多个RDE具有四阶精度。该方案被证明比竞争的四阶ETD和IMEX方案更有效,在CPU时间上实现了高达20倍的加速。包含多达三个低阶l -稳定格式的预平滑步骤,有助于有效地阻尼由非光滑初始/边界条件问题引起的杂散振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fourth-order exponential time differencing scheme with dimensional splitting for non-linear reaction–diffusion systems
A fourth-order exponential time differencing (ETD) Runge–Kutta scheme with dimensional splitting is developed to solve multidimensional non-linear systems of reaction–diffusion equations (RDE). By approximating the matrix exponential in the scheme with the A-acceptable Padé (2,2) rational function, the resulting scheme (ETDRK4P22-IF) is verified empirically to be fourth-order accurate for several RDE. The scheme is shown to be more efficient than competing fourth-order ETD and IMEX schemes, achieving up to 20X speed-up in CPU time. Inclusion of up to three pre-smoothing steps of a lower order L-stable scheme facilitates efficient damping of spurious oscillations arising from problems with non-smooth initial/boundary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信