Y. Shi , S.N. Lan , J.Q. Yao , H.J. Huang , K. Wang , S.R. Li , X.W. Liu , Z.T. Fan
{"title":"高温下通过添加铌实现多主元素合金的有效强化和增韧","authors":"Y. Shi , S.N. Lan , J.Q. Yao , H.J. Huang , K. Wang , S.R. Li , X.W. Liu , Z.T. Fan","doi":"10.1016/j.matchar.2025.114852","DOIUrl":null,"url":null,"abstract":"<div><div>The strength-ductility trade-off of alloys has always been one of the key issues hindering the development of the metal industry. Herein, we found that the minor addition of Nb could strength FCC/BCC and BCC/B2 phase boundaries of multi-principal elements alloy (MPEA) and promoted the content of BCC phases. The ultimate tensile strength over 920 MPa with uniform elongation of 34.1 % at 873 K is accomplished in Fe<sub>31.75</sub>Ni<sub>27.75</sub>Cr<sub>25</sub>Al<sub>10</sub>Ti<sub>5</sub>Nb<sub>0.5</sub> MPEA, which increased by 101.8 % in uniform elongation and 23.0 % in ultimate tensile strength in comparison to the Fe<sub>32</sub>Ni<sub>28</sub>Cr<sub>25</sub>Al<sub>10</sub>Ti<sub>5</sub> MPEA. These findings provide a microalloying strategy to upgrade high-temperature mechanical properties within a strength and ductility window perhaps more effectively than existing strengthening and toughening approaches.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"222 ","pages":"Article 114852"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective strengthening and toughening in multi-principal elements alloy via Nb addition at elevated temperature\",\"authors\":\"Y. Shi , S.N. Lan , J.Q. Yao , H.J. Huang , K. Wang , S.R. Li , X.W. Liu , Z.T. Fan\",\"doi\":\"10.1016/j.matchar.2025.114852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The strength-ductility trade-off of alloys has always been one of the key issues hindering the development of the metal industry. Herein, we found that the minor addition of Nb could strength FCC/BCC and BCC/B2 phase boundaries of multi-principal elements alloy (MPEA) and promoted the content of BCC phases. The ultimate tensile strength over 920 MPa with uniform elongation of 34.1 % at 873 K is accomplished in Fe<sub>31.75</sub>Ni<sub>27.75</sub>Cr<sub>25</sub>Al<sub>10</sub>Ti<sub>5</sub>Nb<sub>0.5</sub> MPEA, which increased by 101.8 % in uniform elongation and 23.0 % in ultimate tensile strength in comparison to the Fe<sub>32</sub>Ni<sub>28</sub>Cr<sub>25</sub>Al<sub>10</sub>Ti<sub>5</sub> MPEA. These findings provide a microalloying strategy to upgrade high-temperature mechanical properties within a strength and ductility window perhaps more effectively than existing strengthening and toughening approaches.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"222 \",\"pages\":\"Article 114852\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104458032500141X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104458032500141X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Effective strengthening and toughening in multi-principal elements alloy via Nb addition at elevated temperature
The strength-ductility trade-off of alloys has always been one of the key issues hindering the development of the metal industry. Herein, we found that the minor addition of Nb could strength FCC/BCC and BCC/B2 phase boundaries of multi-principal elements alloy (MPEA) and promoted the content of BCC phases. The ultimate tensile strength over 920 MPa with uniform elongation of 34.1 % at 873 K is accomplished in Fe31.75Ni27.75Cr25Al10Ti5Nb0.5 MPEA, which increased by 101.8 % in uniform elongation and 23.0 % in ultimate tensile strength in comparison to the Fe32Ni28Cr25Al10Ti5 MPEA. These findings provide a microalloying strategy to upgrade high-temperature mechanical properties within a strength and ductility window perhaps more effectively than existing strengthening and toughening approaches.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.