简单几何有丝分裂

IF 0.9 2区 数学 Q2 MATHEMATICS
Valentina Kiritchenko
{"title":"简单几何有丝分裂","authors":"Valentina Kiritchenko","doi":"10.1016/j.jcta.2025.106022","DOIUrl":null,"url":null,"abstract":"<div><div>We construct simple geometric operations on faces of the Cayley sum of two polytopes. These operations can be thought of as convex geometric counterparts of divided difference operators in Schubert calculus. We show that these operations give a uniform construction of Knutson–Miller mitosis in the type <em>A</em> and Fujita mitosis in the type <em>C</em> on Kogan faces of Gelfand–Zetlin polytopes.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106022"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple geometric mitosis\",\"authors\":\"Valentina Kiritchenko\",\"doi\":\"10.1016/j.jcta.2025.106022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct simple geometric operations on faces of the Cayley sum of two polytopes. These operations can be thought of as convex geometric counterparts of divided difference operators in Schubert calculus. We show that these operations give a uniform construction of Knutson–Miller mitosis in the type <em>A</em> and Fujita mitosis in the type <em>C</em> on Kogan faces of Gelfand–Zetlin polytopes.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"213 \",\"pages\":\"Article 106022\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000172\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000172","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在两个多面体的Cayley和的面上构造了简单的几何运算。这些操作可以被认为是舒伯特微积分中差除算子的凸几何对应物。我们证明了这些操作在Gelfand-Zetlin多面体的Kogan面上给出了a型的Knutson-Miller有丝分裂和C型的Fujita有丝分裂的统一结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple geometric mitosis
We construct simple geometric operations on faces of the Cayley sum of two polytopes. These operations can be thought of as convex geometric counterparts of divided difference operators in Schubert calculus. We show that these operations give a uniform construction of Knutson–Miller mitosis in the type A and Fujita mitosis in the type C on Kogan faces of Gelfand–Zetlin polytopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信