苹果酸作为连接银纳米粒子到Fe3O4纳米簇的有机连接剂:协同增强抗菌和抗氧化活性

Fatima E. Alzhrani , Munazza Gull , Amna N. Khan , M. Aslam , Wafa A. Bawazir , Noor M. Bataweel , Ahmed M. Al-hejin , A. Hameed , M. Tahir Soomro
{"title":"苹果酸作为连接银纳米粒子到Fe3O4纳米簇的有机连接剂:协同增强抗菌和抗氧化活性","authors":"Fatima E. Alzhrani ,&nbsp;Munazza Gull ,&nbsp;Amna N. Khan ,&nbsp;M. Aslam ,&nbsp;Wafa A. Bawazir ,&nbsp;Noor M. Bataweel ,&nbsp;Ahmed M. Al-hejin ,&nbsp;A. Hameed ,&nbsp;M. Tahir Soomro","doi":"10.1016/j.nxmate.2025.100542","DOIUrl":null,"url":null,"abstract":"<div><div>The study presents a simple and user-friendly one-pot method for fabricating Ag@Fe<sub>3</sub>O<sub>4</sub> nanoclusters (NCs) and demonstrates their superior antimicrobial and antioxidant activity. In contrast, Ag NPs and Fe<sub>2</sub>O<sub>3</sub> NPs synthesized with ascorbic acid as a reducing agent showed no antimicrobial effectiveness. The fabrication process of Ag@Fe<sub>3</sub>O<sub>4</sub> NCs involved linking Ag NPs to Fe<sub>3</sub>O<sub>4</sub> NCs by hydrolyzing FeCl<sub>3</sub> to Fe(OH)<sub>3</sub> with NaOH, reducing Fe(OH)<sub>3</sub> to Fe(OH)<sub>2</sub> using malic acid, and then oxidizing Fe(OH)<sub>2</sub> with AgNO<sub>3</sub>. In the colloidal solution, malate ions from malic acid served as linkers, connecting Ag NPs to Fe<sub>3</sub>O<sub>4</sub> NCs through surface interactions. FESEM images showed smaller spherical Ag NPs attached to clusters of square-shaped Fe<sub>3</sub>O<sub>4</sub> particles, while FTIR analysis confirmed the presence of malate ions in the colloidal solution. The antimicrobial activity was assessed against Gram-positive bacteria (<em>B. cereus</em>, MRSA), Gram-negative bacteria (<em>E. coli</em>, <em>P. aeruginosa</em>, <em>S. liquefaciens</em>), and yeasts (<em>C. albicans</em>, <em>C. tropicalis</em>), showing that Ag@Fe<sub>3</sub>O<sub>4</sub> NCs effectively eliminated both bacteria and fungi. MIC and growth curve investigations showed that even at very low concentrations, the individual components of Ag@Fe<sub>3</sub>O<sub>4</sub> NCs (Ag NPs and Fe<sub>3</sub>O<sub>4</sub> NCs) effectively synergize to inhibit bacterial growth. Additionally, the DPPH assay revealed that the antioxidant efficacy of Ag@Fe<sub>3</sub>O<sub>4</sub> NCs was also enhanced through this synergistic interaction. This combined effect is attributed to the external force exerted by Fe<sub>3</sub>O<sub>4</sub> NCs on the membrane, disrupting the cell wall and facilitating the entry of Ag NPs into the cell interior. Therefore, attaching Ag NPs to Fe<sub>3</sub>O<sub>4</sub> NCs in a colloidal solution represents a novel approach for optimizing both antimicrobial and antioxidant properties.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100542"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Malic acid as an organic linker for attaching Ag NPs to Fe3O4 nanoclusters: Synergistic enhancement of antimicrobial and antioxidant activities\",\"authors\":\"Fatima E. Alzhrani ,&nbsp;Munazza Gull ,&nbsp;Amna N. Khan ,&nbsp;M. Aslam ,&nbsp;Wafa A. Bawazir ,&nbsp;Noor M. Bataweel ,&nbsp;Ahmed M. Al-hejin ,&nbsp;A. Hameed ,&nbsp;M. Tahir Soomro\",\"doi\":\"10.1016/j.nxmate.2025.100542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study presents a simple and user-friendly one-pot method for fabricating Ag@Fe<sub>3</sub>O<sub>4</sub> nanoclusters (NCs) and demonstrates their superior antimicrobial and antioxidant activity. In contrast, Ag NPs and Fe<sub>2</sub>O<sub>3</sub> NPs synthesized with ascorbic acid as a reducing agent showed no antimicrobial effectiveness. The fabrication process of Ag@Fe<sub>3</sub>O<sub>4</sub> NCs involved linking Ag NPs to Fe<sub>3</sub>O<sub>4</sub> NCs by hydrolyzing FeCl<sub>3</sub> to Fe(OH)<sub>3</sub> with NaOH, reducing Fe(OH)<sub>3</sub> to Fe(OH)<sub>2</sub> using malic acid, and then oxidizing Fe(OH)<sub>2</sub> with AgNO<sub>3</sub>. In the colloidal solution, malate ions from malic acid served as linkers, connecting Ag NPs to Fe<sub>3</sub>O<sub>4</sub> NCs through surface interactions. FESEM images showed smaller spherical Ag NPs attached to clusters of square-shaped Fe<sub>3</sub>O<sub>4</sub> particles, while FTIR analysis confirmed the presence of malate ions in the colloidal solution. The antimicrobial activity was assessed against Gram-positive bacteria (<em>B. cereus</em>, MRSA), Gram-negative bacteria (<em>E. coli</em>, <em>P. aeruginosa</em>, <em>S. liquefaciens</em>), and yeasts (<em>C. albicans</em>, <em>C. tropicalis</em>), showing that Ag@Fe<sub>3</sub>O<sub>4</sub> NCs effectively eliminated both bacteria and fungi. MIC and growth curve investigations showed that even at very low concentrations, the individual components of Ag@Fe<sub>3</sub>O<sub>4</sub> NCs (Ag NPs and Fe<sub>3</sub>O<sub>4</sub> NCs) effectively synergize to inhibit bacterial growth. Additionally, the DPPH assay revealed that the antioxidant efficacy of Ag@Fe<sub>3</sub>O<sub>4</sub> NCs was also enhanced through this synergistic interaction. This combined effect is attributed to the external force exerted by Fe<sub>3</sub>O<sub>4</sub> NCs on the membrane, disrupting the cell wall and facilitating the entry of Ag NPs into the cell interior. Therefore, attaching Ag NPs to Fe<sub>3</sub>O<sub>4</sub> NCs in a colloidal solution represents a novel approach for optimizing both antimicrobial and antioxidant properties.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"8 \",\"pages\":\"Article 100542\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822825000607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种简单易用的单锅法制备Ag@Fe3O4纳米团簇(NCs)的方法,并证明了其优越的抗菌和抗氧化活性。相反,以抗坏血酸为还原剂合成的Ag NPs和Fe2O3 NPs没有抗菌效果。Ag@Fe3O4 NCs的制备工艺是通过NaOH将FeCl3水解为Fe(OH)3,用苹果酸将Fe(OH)3还原为Fe(OH)2,再用AgNO3氧化Fe(OH)2,将Ag NPs与Fe3O4 NCs连接。在胶体溶液中,苹果酸中的苹果酸离子作为连接剂,通过表面相互作用将Ag NPs与Fe3O4 NCs连接起来。FESEM图像显示较小的球形Ag NPs附着在方形Fe3O4颗粒簇上,而FTIR分析证实胶体溶液中存在苹果酸盐离子。对革兰氏阳性菌(蜡样芽孢杆菌、MRSA)、革兰氏阴性菌(大肠杆菌、铜绿假单胞菌、液化链球菌)和酵母菌(白色假单胞菌、热带假单胞菌)的抗菌活性进行了评估,结果表明Ag@Fe3O4 NCs有效地消除了细菌和真菌。MIC和生长曲线研究表明,即使在非常低的浓度下,Ag@Fe3O4 NCs的各个成分(Ag NPs和Fe3O4 NCs)也能有效协同抑制细菌生长。此外,DPPH分析显示Ag@Fe3O4 NCs的抗氧化作用也通过这种协同作用得到增强。这种综合效应归因于Fe3O4 NCs对细胞膜施加的外力,破坏了细胞壁,促进了Ag NPs进入细胞内部。因此,在胶体溶液中将Ag NPs附着在Fe3O4 NCs上代表了一种优化抗菌和抗氧化性能的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Malic acid as an organic linker for attaching Ag NPs to Fe3O4 nanoclusters: Synergistic enhancement of antimicrobial and antioxidant activities
The study presents a simple and user-friendly one-pot method for fabricating Ag@Fe3O4 nanoclusters (NCs) and demonstrates their superior antimicrobial and antioxidant activity. In contrast, Ag NPs and Fe2O3 NPs synthesized with ascorbic acid as a reducing agent showed no antimicrobial effectiveness. The fabrication process of Ag@Fe3O4 NCs involved linking Ag NPs to Fe3O4 NCs by hydrolyzing FeCl3 to Fe(OH)3 with NaOH, reducing Fe(OH)3 to Fe(OH)2 using malic acid, and then oxidizing Fe(OH)2 with AgNO3. In the colloidal solution, malate ions from malic acid served as linkers, connecting Ag NPs to Fe3O4 NCs through surface interactions. FESEM images showed smaller spherical Ag NPs attached to clusters of square-shaped Fe3O4 particles, while FTIR analysis confirmed the presence of malate ions in the colloidal solution. The antimicrobial activity was assessed against Gram-positive bacteria (B. cereus, MRSA), Gram-negative bacteria (E. coli, P. aeruginosa, S. liquefaciens), and yeasts (C. albicans, C. tropicalis), showing that Ag@Fe3O4 NCs effectively eliminated both bacteria and fungi. MIC and growth curve investigations showed that even at very low concentrations, the individual components of Ag@Fe3O4 NCs (Ag NPs and Fe3O4 NCs) effectively synergize to inhibit bacterial growth. Additionally, the DPPH assay revealed that the antioxidant efficacy of Ag@Fe3O4 NCs was also enhanced through this synergistic interaction. This combined effect is attributed to the external force exerted by Fe3O4 NCs on the membrane, disrupting the cell wall and facilitating the entry of Ag NPs into the cell interior. Therefore, attaching Ag NPs to Fe3O4 NCs in a colloidal solution represents a novel approach for optimizing both antimicrobial and antioxidant properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信