含生物质骨料的改性透水混凝土:可持续性和环境效益

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Akram M. Mhaya , Shahiron Shahidan , Sharifah Salwa Mohd Zuki , S.J.S. Hakim , Mohd Haziman Wan Ibrahim , Mohamad Azim Mohammad Azmi , Ghasan Fahim Huseien
{"title":"含生物质骨料的改性透水混凝土:可持续性和环境效益","authors":"Akram M. Mhaya ,&nbsp;Shahiron Shahidan ,&nbsp;Sharifah Salwa Mohd Zuki ,&nbsp;S.J.S. Hakim ,&nbsp;Mohd Haziman Wan Ibrahim ,&nbsp;Mohamad Azim Mohammad Azmi ,&nbsp;Ghasan Fahim Huseien","doi":"10.1016/j.asej.2025.103324","DOIUrl":null,"url":null,"abstract":"<div><div>Pervious concrete (PC) can be called porous concrete or no fine concrete that has a high rate of permeability and low compressive strength. In general, compressive strength is inversely related to the void ratio. In this research, PC incorporating biomass as a coarse aggregate replacement (0 %–10 %) was assessed utilizing compressive strength tests in a systematic way. Here, response surface methodology (RSM) was utilized in designing the experimental works. This study focused on the effect with respect to biomass aggregate (BA) on the compressive strength and the void ratio of PC. Three groups of mixtures with 0 %, 5 % and 10 % of BA were experimented with. The first group was a control mix without additives. The second group contained gellan gum (GG) and silica fume (SF) as additives. The third group comprised rice husk ash (RHA), fly ash (FA) and SF as blended cement. Compressive strength, permeability, void ratio as well as water absorption tests were conducted. The test results showed that BA, as a partial replacement of natural aggregate, tends to reduce the compressive strength of PC. Specimens with blended cement containing 5 % of BA achieved 12.10 MPa, which is 46.7 % higher than the control mix, which achieved 6.45 MPa, after 28 days of curing. Note that the compressive strength of the specimens modified with pozzolanic materials (FA, SF, and RHA) and containing 10 % of BA was 42.5 % higher than the control mix. In contrast, specimens with GG and SF achieved almost the same compressive strength compared with the control mix. This is expected to reignite the interest in PC containing BA for sustainable construction. However, it was also deduced that the outcomes of both the mathematical and experimental<!--> <!-->models of RSM were accurate and consistent. Strong correlation and minimum error were indicated by the correlation statistical indicators (R<sup>2</sup>), which were higher than 0.98, and the error was less than 0.2.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 3","pages":"Article 103324"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified pervious concrete containing biomass aggregate: Sustainability and environmental benefits\",\"authors\":\"Akram M. Mhaya ,&nbsp;Shahiron Shahidan ,&nbsp;Sharifah Salwa Mohd Zuki ,&nbsp;S.J.S. Hakim ,&nbsp;Mohd Haziman Wan Ibrahim ,&nbsp;Mohamad Azim Mohammad Azmi ,&nbsp;Ghasan Fahim Huseien\",\"doi\":\"10.1016/j.asej.2025.103324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pervious concrete (PC) can be called porous concrete or no fine concrete that has a high rate of permeability and low compressive strength. In general, compressive strength is inversely related to the void ratio. In this research, PC incorporating biomass as a coarse aggregate replacement (0 %–10 %) was assessed utilizing compressive strength tests in a systematic way. Here, response surface methodology (RSM) was utilized in designing the experimental works. This study focused on the effect with respect to biomass aggregate (BA) on the compressive strength and the void ratio of PC. Three groups of mixtures with 0 %, 5 % and 10 % of BA were experimented with. The first group was a control mix without additives. The second group contained gellan gum (GG) and silica fume (SF) as additives. The third group comprised rice husk ash (RHA), fly ash (FA) and SF as blended cement. Compressive strength, permeability, void ratio as well as water absorption tests were conducted. The test results showed that BA, as a partial replacement of natural aggregate, tends to reduce the compressive strength of PC. Specimens with blended cement containing 5 % of BA achieved 12.10 MPa, which is 46.7 % higher than the control mix, which achieved 6.45 MPa, after 28 days of curing. Note that the compressive strength of the specimens modified with pozzolanic materials (FA, SF, and RHA) and containing 10 % of BA was 42.5 % higher than the control mix. In contrast, specimens with GG and SF achieved almost the same compressive strength compared with the control mix. This is expected to reignite the interest in PC containing BA for sustainable construction. However, it was also deduced that the outcomes of both the mathematical and experimental<!--> <!-->models of RSM were accurate and consistent. Strong correlation and minimum error were indicated by the correlation statistical indicators (R<sup>2</sup>), which were higher than 0.98, and the error was less than 0.2.</div></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":\"16 3\",\"pages\":\"Article 103324\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2090447925000656\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000656","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

透水混凝土(PC)具有高渗透率和低抗压强度的特点,可称为多孔混凝土或无细混凝土。一般来说,抗压强度与孔隙比成反比。在这项研究中,PC结合生物质作为粗骨料替代(0% - 10%)进行评估,利用抗压强度试验在系统的方式。本研究采用响应面法(RSM)进行实验设计。研究了生物质骨料(BA)对PC抗压强度和孔隙率的影响。分别对BA含量为0%、5%和10%的三组混合物进行了试验。第一组是不含添加剂的对照混合物。第二组以结冷胶(GG)和硅灰(SF)为添加剂。第三组由稻壳灰(RHA)、粉煤灰(FA)和SF作为混合水泥。进行了抗压强度、透气性、孔隙率、吸水率等试验。试验结果表明,BA作为天然集料的部分替代,有降低PC抗压强度的趋势。掺入5% BA的水泥在养护28 d后达到12.10 MPa,比对照6.45 MPa提高46.7%。值得注意的是,用火山灰材料(FA、SF和RHA)改性且含有10% BA的试样的抗压强度比对照混合物高42.5%。相比之下,添加了GG和SF的试件的抗压强度与对照混合物几乎相同。这有望重新点燃人们对可持续建筑中含有BA的PC的兴趣。同时,推导出RSM数学模型和实验模型的计算结果是准确和一致的。相关统计指标R2均大于0.98,误差小于0.2,相关性强,误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified pervious concrete containing biomass aggregate: Sustainability and environmental benefits
Pervious concrete (PC) can be called porous concrete or no fine concrete that has a high rate of permeability and low compressive strength. In general, compressive strength is inversely related to the void ratio. In this research, PC incorporating biomass as a coarse aggregate replacement (0 %–10 %) was assessed utilizing compressive strength tests in a systematic way. Here, response surface methodology (RSM) was utilized in designing the experimental works. This study focused on the effect with respect to biomass aggregate (BA) on the compressive strength and the void ratio of PC. Three groups of mixtures with 0 %, 5 % and 10 % of BA were experimented with. The first group was a control mix without additives. The second group contained gellan gum (GG) and silica fume (SF) as additives. The third group comprised rice husk ash (RHA), fly ash (FA) and SF as blended cement. Compressive strength, permeability, void ratio as well as water absorption tests were conducted. The test results showed that BA, as a partial replacement of natural aggregate, tends to reduce the compressive strength of PC. Specimens with blended cement containing 5 % of BA achieved 12.10 MPa, which is 46.7 % higher than the control mix, which achieved 6.45 MPa, after 28 days of curing. Note that the compressive strength of the specimens modified with pozzolanic materials (FA, SF, and RHA) and containing 10 % of BA was 42.5 % higher than the control mix. In contrast, specimens with GG and SF achieved almost the same compressive strength compared with the control mix. This is expected to reignite the interest in PC containing BA for sustainable construction. However, it was also deduced that the outcomes of both the mathematical and experimental models of RSM were accurate and consistent. Strong correlation and minimum error were indicated by the correlation statistical indicators (R2), which were higher than 0.98, and the error was less than 0.2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信